
Shared input and recurrency in neural networks for
metabolically efficient information transmission

Tomas Barta1,2*, Lubomir Kostal1**

1 Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
2 Charles University, First Medical Faculty, Prague, Czech Republic

* tomas.barta@fgu.cas.cz
** kostal@biomed.cas.cz

Abstract

Shared input to a population of neurons induces noise correlations, which decreases the
information carried by a population activity. Inhibitory feedback in recurrent neural
networks can reduce the noise correlations and thus increase the information carried by
the averaged population activity. However, the activity of inhibitory neurons is costly.
This inhibitory feedback decreases the gain of the population. Thus, depolarization of
its neurons requires stronger excitatory synaptic input, which is associated with higher
ATP consumption. Given that the goal of neural populations is to transmit as much
information as possible at minimal metabolic costs, it is unclear whether the increased
information transmission reliability provided by inhibitory feedback compensates for the
additional costs. We analyze this problem in a network of leaky integrate-and-fire
neurons receiving correlated input. By maximizing mutual information with metabolic
cost constraints, we show that there is an optimal strength of recurrent connections in
the network, which maximizes the value of mutual information-per-cost. For higher
values of input correlation, the mutual information-per-cost is higher for recurrent
networks with inhibitory feedback compared to feedforward networks without any
inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a
recurrent network can be inferred from metabolically efficient coding arguments and
that decorrelation of the input by inhibitory feedback compensates for the associated
increased metabolic costs.

Author summary

Information processing in neurons is mediated by electrical activity through ionic
currents. To reach homeostasis, neurons must actively work to reverse these ionic
currents. This process consumes energy in the form of ATP. Typically the more energy
the neuron can use, the more information it can transmit. It is generally assumed that
due to evolutionary pressures, neurons evolved to process and transmit information
efficiently at high rates but also at low costs. Many studies have addressed this balance
between transmitted information and metabolic costs for the activity of single neurons.
However, information is often carried by the activity of a population of neurons instead
of single neurons, and few studies investigated this balance in the context of recurrent
neural networks, which can be found in the cortex. In such networks, the external input
from thalamocortical synapses introduces pairwise correlations between the neurons,
complicating the information transmission. These correlations can be reduced by
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inhibitory feedback through recurrent connections between inhibitory and excitatory
neurons in the network. However, such activity increases the metabolic cost of the
activity of the network. By analyzing the balance between decorrelation through
inhibitory feedback and correlation through shared input from the thalamus, we find
that both the shared input and inhibitory feedback can help increase the
information-metabolic efficiency of the system.

1 Introduction

The efficient coding hypothesis poses that neurons evolved due to evolutionary pressure
to transmit information as efficiently as possible (Barlow, 1961). Moreover, the brain
has only a limited energy budget, and neural activity is costly (Attwell and Laughlin,
2001; Harris et al., 2012). The metabolic expense associated with neural activity should,
therefore, be considered, and neural systems likely work in an information-metabolically
efficient manner, balancing the trade-off between transmitted information and the cost
of the neural activity (Levy and Baxter, 1996; Balasubramanian et al., 2001; Laughlin,
2001; Niven and Laughlin, 2008; Yu and Yu, 2017).

The principles of information-metabolically efficient coding have been successfully
applied to study the importance of the excitation-inhibition balance in neural systems.
It has been shown that the mutual information between input and output per unit of
cost for a single neuron is higher if the excitatory and inhibitory synaptic currents to
the neuron are approximately equal if the source of noise lies in the stochastic nature of
the voltage-gated Na+and K+channels (Sengupta et al., 2013). In a rate coding scheme,
where the source of noise lies in the random arrival of pre-synaptic action potentials, the
mutual information per unit of cost has been shown to be rather unaffected by the
increase of pre-synaptic inhibition associated with an excitatory input (Barta and
Kostal, 2019).

However, the balance of excitation and inhibition is likely to be more important in
the context of recurrent neural networks than in the context of single neurons. In
recurrent neural networks, the inhibitory input to neurons associated with a stimulus
(Monier et al., 2003) arises as inhibitory feedback from a population of inhibitory
neurons. The inhibitory feedback prevents a self-induced synchronization of the neural
activity (Brunel, 2000) and reduces noise correlations induced by shared input to
neurons in the population (Renart et al., 2010; Tetzlaff et al., 2012; Bernacchia and
Wang, 2013). Noise correlations are detrimental to information transmission by neural
populations (Abbott and Dayan, 1999; Averbeck et al., 2006) and information is likely
transmitted by the activity of a population of neurons instead of a single neuron
(Shadlen and Newsome, 1998). Therefore, when studying the effect of
excitation-inhibition balance on information transmission, it is essential to consider the
context of neural populations.

Several studies have analyzed the effect of noise correlations on information
transmission properties (Abbott and Dayan, 1999; Averbeck et al., 2006; Moreno-Bote
et al., 2014). However, these studies did not analyze the relationship between the noise
correlations and the metabolic cost of neural activity. In our work, we consider a
computational model of a small part of the sensory cortex and the noise correlations
caused by shared connections from an external thalamic population. The noise
correlations may then be reduced by inhibitory feedback, which, however, increases the
cost of the neural activity (Barta and Kostal, 2019). Our point of interest is the
trade-off between improved information transmission due to lower noise correlations and
the increase in metabolic costs due to stronger inhibitory feedback.
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2 Methods

2.1 Network model

We modeled a network consisting of three subpopulations: external (ext), excitatory
(exc), and inhibitory (inh). The external subpopulation consisted of Poisson neurons,
defined by their firing intensity λ0

ext (same for all the neurons in the subpopulation).
Neurons in the excitatory and inhibitory subpopulations were modeled as leaky
integrate-and-fire (LIF) neurons:

Cm
dV i

dt
= gL(EL − V i) + Iirec(V

i, t) + Iiext(V
i, t) + Ibcgi(V i, t), (1)

Iirec(V
i, t) = giexc(Ee − V i) + giinh(Ei − V i), (2)

Iiext(V
i, t) = giext(Ee − V i), (3)

Iibcg(V
i, t) = gibcg,exc(Ee − V i) + gibcg,inh(Ei − V i), (4)

τexc
dgiext
dt

= −giext +

next∑
j=1

∑
ts∈T j

ext

W ij
extδ(t− ts), (5)

τexc
dgiexc
dt

= −giexc +

nexc∑
j=1

∑
ts∈T j

exc

W ij
excδ(t− ts), (6)

τinh
dgiext
dt

= −giinh +

ninh∑
j=1

∑
ts∈T j

inh

W ij
inhδ(t− ts), (7)

τexc
dgibcg,exc

dt
= (µbcg,exc − gibcg,exc) + τexcσbcg,exc

√
2

τexc
ηiexc(t), (8)

τinh
dgibcg,inh

dt
= (µbcg,inh − gibcg,inh) + τinhσbcg,inh

√
2

τinh
ηiinh(t). (9)

Irec is the synaptic current arising from the recurrent connections (exc. to exc., exc. to
inh., inh. to exc., inh. to inh.). Iext is the excitatory current from external neurons. Ibcg
is the current from synapses from neighboring cortex areas. T j

ext, T j
exc, T

j
inh represent

the spike times of the j-th external, excitatory, and inhibitory neuron respectively. The
matrices Wext, Wexc, Winh contain the synaptic connection strengths, W ij

X = aX
(X ∈ {ext, exc, inh}) if the j-th neuron connects to the i-th neuron and 0 otherwise.
The input from neighboring cortical areas is modeled as the Ornstein-Uhlenbeck process
with means µbcg,exc and µbcg,inh and standard deviations of the limiting distributions
σbcg,exc and σbcg,inh (Uhlenbeck and Ornstein, 1930; Destexhe et al., 2001). We set the
values of the background activity to match the moments of an exponential Poisson shot
noise with rates λbcg,exc = 0.5 kHz and λbcg,inh = 0.125 kHz (Rajdl and Lansky, 2015):

µX = aXτXλX , (10)

σX = aX

√
λXτX

2
, (11)

where X represents the excitatory or inhibitory background activity.
When the membrane potential V crosses the firing threshold (θexc, θinh) a spike is

fired and the membrane potential is reset to EL.
The network consisted of next = 1000 neurons in the external population, nexc = 800

neurons in the excitatory population, and ninh = 200 neurons in the inhibitory
population. The connections were set randomly with connection probability for the
recurrent connections (exc. to exc., exc. to inh., inh. to inh., inh. to exc.) set to
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Table 1. Parameters of the LIF model

Membrane capacitance Cm 150 pF
Leak conductance gL 10 nS
Resting potential EL −80mV
Exc. reversal potential Ee 0mV
Inh. reversal potential Ei −80mV
Exc. synapse decay τexc 5ms
Inh. synapse decay τinh 5ms
Exc. threshold θexc −55mV
Inh. threshold θinh −60mV
Ext. synapse amplitude aext 1 nS
Exc. synapse amplitude aexc 0.01–1 nS
Inh. synapse amplitude ainh g · aexc
Exc. inh. synapse amplitude abcg,exc aext
Bcg. inh. synapse amplitude abcg,inh g · aext
Inh. scaling factor g 20

Prec = 20% and the connection probability from the external population (ext. to exc.
and ext. to inh., Pext) was varied from to 1% to 100% (Fig. 1A). We created the
connection matrices WX by generating a matrix of random uniformly distributed
numbers RX from the interval [0, 1) and set W ij

X = aX if Rij
ext < Pext or R

ij
X < PX for

X ∈ {exc, inh}. The random matrix Rext was the same for all values of Pext. In
simulations where we controlled for the effects caused by a random number of
connections from the external population, we fixed the number of connections by setting
only the k = nextPext elements in each row of Wext non-zero, in the location of the k
largest elements of the i-th row of Rext.

The simulations were carried out using the Brian 2 package (Stimberg et al., 2019)
in Python with a 0.1ms time step.

2.2 Obtaining the input-output relationship of the network

We considered the total number of action potentials n from the excitatory and
inhibitory subpopulations in time window ∆T = 1 s as the output of the network. We
modeled the stimulus as the input from the thalamic neurons, parametrized by the
mean input rate to a single neuron:

λext = nextλ
0
ext

100%

Pext
, (12)

where λ0
ext is the firing rate of a single neuron in the external population and next

100%
Pext

is
the mean number of pre-synaptic external neuron for each neuron in the excitatory and
inhibitory populations. For each set of parameters (arec and Pext pair) we determined
the input λmax

ext (arec, Pext) for which the output reached 30 kHz. In order to obtain the
input-output relationship, we discretized the input space into 30 equidistant stimulus
intensities: λi

ext(arec, Pext) =
i
30λ

max
ext (arec, Pext), where i = 0, . . . , 30. With a fixed

network connectivity, we simulated the network 1080 times for each λi
ext(arec, Pext).

We then fitted 7th-degree polynomial functions to the mean output of the network
as a function of the stimulus λext and to the Fano factor as a function of the mean
output, where Fano factor is defined as:

FF =
Var[N ]

E[N ]
, (13)
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where N is a random variable representing the number of output action potentials n.
The weights of the polynomial fit were set as 1

y2 , where y is the independent variable.
We then discretized the input space to 1000 equidistant stimulus intensities and
estimated the mean output µ and Fano factor FF for each intensity from the
polynomial functions. We then estimated the input-output relationship, defined by the
conditional probability distribution f(n|λext) as a lognormal distribution for each λext,
with corresponding parameters to match the estimated mean and Fano factor:

f(n|λext) =
1

Z

1

nσlog

√
2π

exp

(
−
(lnn− µ2

log)

2σ2
log

)
, (14)

σlog =

√
ln

(
FF

µ
+ 1

)
, (15)

µlog = lnµ−
σ2
log

2
, (16)

Z =

+∞∑
n=0

1

nσlog

√
2π

exp

(
−
(lnn− µ2

log)

2σ2
log

)
. (17)

In this way, we avoided the sampling bias when calculating information measures
from the data (Treves and Panzeri, 1995).

2.3 Metabolic cost of neural activity

In our calculations, we focus on the energy in the form of ATP molecules required to
pump out Na+ ions. We take into account the Na+ influx due to excitatory
post-synaptic currents, Na+ influx during action potentials, and Na+ influx to maintain
the resting potential. To this end, we follow the calculations in (Attwell and Laughlin,
2001) and (Harris et al., 2012), which we modify for our neuronal model.

We assume the standard membrane capacitance per area as cm = 1 µF/cm2 and the
cell diameter as D = 69µm, giving the total capacitance Cm = πD2cm = 150 pF.
Therefore, to depolarize a neuron by ∆V = 100mV the minimum charge influx is
∆V Cm = 1.5× 10−11 C and the minimum number of Na+ ions ∆V Cm

e

.
= 9.375× 107,

where e
.
= 1.6× 10−19 C is the elementary charge. The minimal number of Na+ ions is

then quadrupled to get a more realistic estimate of the Na+ influx due to the
simultaneous opening of the K+ channels (Attwell and Laughlin, 2001). The Na+ influx
must be then pumped out by the Na+/K+-ATPase, which requires one ATP molecule
per 3 Na+ ions. The cost of a single action potential can be then estimated as
4
3 × 9.375× 107 ATP = 1.25× 108 ATP. However, about 80% of the metabolic costs
associated with an action potential are expected to come from the propagation of the
action potential through the neuron’s axons. Therefore, we estimate the total cost as
6.25× 108 ATP.

Next, we assume that the excitatory synaptic current is mediated by the opening of
Na+ and K+ channels with reversal potentials ENa = 90mV and EK = −105mV. For
the excitatory synaptic current, the following must hold

(gexc + gext)(V − Ee) = gNa(V − ENa) + gK(V − EK), (18)

gNa + gK = gext + gexc. (19)

Therefore:

INa =
gK(V − EK)

(gexc + gext)(V − Ee)
. (20)
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The sodium entering with the sodium current INa must be pumped out by the
Na+/K+-ATPase and therefore we calculate the cost of the synaptic current as
1
3eINa∆T ATP, where ∆T is the time interval over which we are measuring the cost.

Each input to the network (parametrized by λext) is then associated with a cost,
which we express as

w(λext) =

(
(Nexcµexc +Ninhµinh +Nextλext

100%

Pext
)WAP+

+
Nexc⟨IexcNa ⟩+Ninh⟨I inhNa ⟩

3e

)
∆T,

(21)

where µexc = µexc(λext), µinh = µinh(λext) are the mean firing rates of a single
excitatory and inhibitory neuron (given the input λext), ⟨IexcNa ⟩ = ⟨IexcNa ⟩(λext) and
⟨I inhNa ⟩ = ⟨I inhNa ⟩(λext) are the average excitatory synaptic currents in a single excitatory
and inhibitory neuron.

2.4 Measuring the information content

We treat the neural network as a memoryless information channel (Shannon, 1948;
Thomas M. Cover, 2006). The firing rates of the external population λext are the input
to the channel, and the number of action potentials n that the excitatory population
fires in the time window ∆T = 1 s is the output of the channel. The input is then
described by a random variable Λ and the output by a random variable N . The mutual
information between the input and the output I(Λ;N) is calculated as

I(Λ;N) =

∫ λmax
ext

λmin
ext

p(λext)i(λext;N) dλext, (22)

i(λext;N) =

+∞∑
n=0

i(λext;n)qp(n), (23)

i(λext;n) = log2
f(n|λext)

qp(n)
, (24)

qp(n) =

∫ λmax
ext

λmin
ext

p(λext)f(n|λext) dλext, (25)

where f(n|λext) is the probability distribution of N given that Λ = λext, p(λext) is the
input probability distribution, i(λext;n) is the amount of information that an
observation of n spikes gives us about the stimulus λext, i(λext;N) is then the average
amount of information we get from the input λext, qp(n) is the marginal output
probability distribution.

Given the input probability distribution p(λext), we can calculate the average
metabolic cost as

Wp =

∫ λmax
ext

λmin
ext

p(λext)w(λext) dλext. (26)

The capacity-cost function C(W ) is then the lowest upper bound on the amount of
mutual information (in bits) achievable given the constraint that Wp < W :

C(W ) = sup
p(λext):Wp<W

I(Λ;N). (27)
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The information-metabolic efficiency E is then the maximal amount of mutual
information per molecule of ATP between the input and the output:

E =
C(W ∗)

W ∗ , (28)

W ∗ = argmax
W∈[0,+∞)

C(W )

W
. (29)

The capacity-cost function can be obtained numerically with the blahut-arimoto
algorithm (Blahut, 1972), or the information-metabolic efficiency can be conveniently
obtained directly with the Jimbo-Kunisawa algorithm (Jimbo and Kunisawa, 1979;
Suksompong and Berger, 2010).

2.4.1 Low noise approximation of constrained information capacity

If the trial-to-trial variability is very low, a lower bound on the capacity-cost function
can be found (Kostal and Lansky, 2013; Kostal et al., 2013). We used this low-noise
approximation to gain analytical insight into the importance of different properties of
the neural system for information-metabolically efficient information transmission. In
the low noise approximation, the optimal input distribution maximizing the mutual
information constrained by metabolic expenses W is given by

p(λext) =

√
J(λext)

2πe
exp [λ1 − 1− λWw(λext)] . (30)

where J(λext) is the Fisher information and λ1 and λW are the Lagrange multipliers
which can be obtained from the normalization condition:∫ λmax

ext

λmin
ext

p(λext)w(λext) dλext (31)

and the average metabolic cost constraint (Eq. 26). In the Gaussian approximation, the
Fisher information is given by

J(λext) =
µ′
ext(λext)

2

σexc(λext)2
, (32)

where σexc(λext) is the standard deviation of the spike counts at input intensity λext.
The low noise estimate on the capacity-cost function is then

Clow(W ) = 1− λ1 + λWW. (33)

3 Results

3.1 Constrained information maximization in a simple linear
model

In order to gain an insight into what affects the information-metabolic efficiency of a
neural population, we first solve the problem for a simple linear system. The mean
response of the system is given by γ(λext) = gλext, where λext is the stimulus and g is
the gain of the system. The Fano factor (Eq. 13) is constant, and we assume that the
output is continuous and normally distributed. Therefore, the input-output relationship
is described by

f(n|λext) =
1√

2gλextFF
exp

[
−1

2

(
n− gλext

gλextFF

)2
]
. (34)
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and the Fisher information (Eq. 32) is

J(λext) =
g

λextFF
(35)

Next, we assume that the cost of the activity w(λext) depends linearly on the input:

w(λext) = w0λext +W0 =
w0

g
γ(λext) +W0, (36)

where W0 is the cost of the resting state.
The probability distribution derived from the low-noise approximation (Eq. 30) is

then

p(λext) =

√
1

2π

g

λextFF
exp(λ1 − 1− λWw0λext). (37)

After applying the normalization conditions (Eqs. 26 and 31) and using Eq. (33) we
obtain the lower bound on the capacity-cost function:

Clow(W ) =
1

2
log

[
(W −W0)

1

wAP

1

FF

]
, (38)

wAP =
w0

g
, (39)

where wAP is the cost of increasing the output intensity by one action potential.
The gain g, cost scaling w0, and Fano factor FF cannot be considered constant for

real neural populations. However, Eq. (38) provides an insight into the importance of
these properties, which we will study numerically for a more realistic neural system.

In the following, we use

g = µ′
ext(λext), (40)

w0 = w′(λext). (41)

3.2 Inhibitory feedback decorrelates the neural activity

With the increasing probability of shared input (Pext), the mean pairwise correlation
between the firing output of neurons increases (feedforward network, Fig. 1B). These
correlations could be removed by recurrent connections, as long as the synaptic currents
from the recurrent connections were inhibition dominated. We set the excitatory
recurrent synaptic amplitude as aexc = 0.01 nS to create a small perturbation from the
feedforward network and varied the scaling g determining the amplitude of inhibitory
synapses (ainh = gaexc) from 15 to 25. Correlations between neurons were decreased for
g ≥ 20 (Fig. 1C), which was also associated with stronger negative net current from the
recurrent synapses (Fig. 1D). For the network considered further in our work we set
g = 20. Simultaneously increasing the strength of the recurrent synapses with fixed g
led to a further decrease of the correlations among the neurons (Fig. 1E) while further
decreasing the net current from the recurrent synapses (Fig. 1F).

3.3 Trial-to-trial variability of single neurons vs. a population

In an inhibition-dominated network, the input needed from the external population in
order to evoke a given average firing rate has to be higher than in the case of the
feedforward network. The resulting increase in synaptic noise leads to higher
trial-to-trial variability in the LIF model (Fig. 2 A-C; see also (Barta and Kostal,
2021)).
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Fig 1. Inhibitory feedback decreases noise correlations. A: Schematic illustration of the simulated neural network.
Poisson neurons in the external population make random connections to neurons in the excitatory and inhibitory
subpopulations. The connection probability Pext ∈ [0.01, 1] is varied to achieve different levels of shared external input to
the neurons. The neurons in the inhibitory (inh.) and excitatory (exc.) subpopulations make recurrent connections (exc.
to exc., exc. to inh., inh. to inh., inh. to exc.) with probability Prec = 20%. The strength of those connections is
parametrized by arec (Tab. 1). B: Mean pairwise correlations between any two neurons in the exc. and inh.
subpopulations plotted against the mean output of the network for different values of Pext in a feedforward network
(arec = 0nS). C: Mean pairwise correlations as in B, for different values of g (ratio of inhibitory-to-excitatory synaptic
strength), arec = 0.01 nS. D: Total current from recurrent synapses for different values of g, as in C. E-F: Same as in
C-D, but with fixed g = 20 and different values of arec.

In the case of the total population activity, however, the pairwise correlations
between the neurons have a significant effect on the trial-to-trial variability. By denoting
the random variable representing the number of spikes of the i-th neuron observed
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Fig 2. Fano factor of single neurons and of populations. A-C: Mean Fano factor of individual neurons for
different values of Pext: 0.01 (A), 0.2 (B), 1 (C). The strength of the recurrent synapses (arec) is colorcoded. The
mean Fano factor increases with the strength of the recurrent synapses. D-F: Same as in A-C but for the Fano
factor of the population activity. The points represent the population Fano factor obtained from the simulation, and
the lines represent the fit with a 7th-degree polynomial. For Pext = 0.01, the increase in trial-to-trial variability of
individual neurons (A) can have a stronger effect on the population Fano factor than decreasing the pairwise
correlations, resulting in an increase of the population Fano factor with high values of arec (D). For higher values of
Pext, the pairwise correlations greatly increase the population Fano factor, which then decreases with increasing arec.

during time window ∆T as Ni, we get for the Fano factor of the population activity:

FF =
Var(

∑
i Ni)

E [
∑

i Ni]
(42)

=

∑
i Var(Ni)∑
i E [Ni]

+
2
∑

i<j Cov(Ni, Nj)∑
i E [Ni]

(43)

=

∑
i Var(Ni)∑
i E [Ni]

(
1 +

2
∑

i<j Cov(Ni, Nj)∑
i Var (Ni)

)
(44)

=
v

µ

(
1 + (k − 1)

c

v

)
(45)

≈ FF0 (1 + kr) (46)

where c is the mean pairwise covariance, v the mean variance of a neuron, µ is the mean
number of spikes in ∆T , k is the number of neurons, and r is the Pearson correlation
coefficient. The last approximation holds for neurons with identical variances and
pairwise covariances (Abbott and Dayan, 1999). It provides an insight into how the
pairwise correlations and Fano factor of individual neurons affect the Fano factor of the
total activity. If the correlations or number of neurons are small (r · k ≪ 1), the
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decorrelation by strengthening the recurrent synapses does not significantly decrease the
population Fano factor. Instead, the population Fano factor may increase due to the
increase of the Fano factor of individual neurons (Fig. 2D, Pext = 1%). If greater
correlations are induced due to the shared input to the network, the correlations have a
dominating effect on the population Fano factor, which can then be greatly decreased
by strengthening the recurrent synapses and in turn decreasing the pairwise correlations
(Fig. 2E-F).

3.4 Inhibitory feedback is metabolically costly

3.4.1 Stronger recurrence strength increases the cost of the resting state

The cost of the resting state is an important factor for information-metabolic efficiency
(Barta and Kostal, 2019). In our network, increasing the recurrence strength decreased
the spontaneous activity of the neurons, due to inhibition dominating the recurrent
currents. However, the simultaneous increase in the strength of the recurrent excitatory
synapses increased the cost of the excitatory synaptic currents (Fig. 3A-C).

3.4.2 Inhibitory feedback decreases gain

Because the net current from recurrent synapses is hyperpolarizing, with stronger
recurrent synapses, a stronger excitatory current is necessary to bring the neuron to a
given post-synaptic firing rate, and higher pre-synaptic firing rates are necessary.
Therefore, the gain g of the network decreases, and with increasing arec the cost of
synaptic currents and the cost of external activity increase (Fig. 3D-E).

3.5 Shared input decreases gain

The number of synapses from the external population for each neuron in the excitatory
and inhibitory subpopulations follows a binomial distribution:

p(k) =

(
Next

k

)
P k
ext(1− Pext)

Next−k, (47)

with the mean number of synapses given by Next ·Pext and variance Next ·Pext(1−Pext).
We scaled the firing rate of the individual neurons in the external population as
λ0
exc =

λexc

Next·Pext
. Therefore the mean output to a single neuron was always λext,

independently of Pext and the variance of the input across neurons was λextNext
1−Pext

Pext
.

Given the convexity of the single neuron tuning curve in the analyzed input range
(S1 Fig) that out of two inputs with an identical mean λext, but different variances
across neurons, the input with the higher variance will lead to a higher average firing
rate. Assuming that the input across neurons follows a normal distribution with mean
λext and variance σ2 and that the single neuron tuning curve can be approximated by
an exponential function in the form of c1 exp(c2x), where x is the input intensity to the
single neuron, we obtain the mean firing rate:∫ +∞

−∞

1

σ
√
2π

exp

[
− (x− λext)

2

σ2

]
c1 exp(−c2x) =

c1√
2
exp

(c2
4
(c2σ

2 − 4λext)
)
, (48)

which grows with the standard deviation of the input.
Accordingly, we observed that networks with higher Pext needed higher λext in order

to produce the same mean PSFR as networks with lower Pext (Fig. 4A-C). Moreover,
the mean Fano factor of individual neurons increased with increasing Pext (Fig. 4D-F).
This effect could be mostly removed by fixing the number of connections from the
external population to each neuron in the excitatory and inhibitory populations to
PextNext (S2 Fig).
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Fig 3. Metabolic cost of the network activity. A-C: Cost at resting state (λext = 0). A: Cost of the excitatory
synaptic currents from the background activity and excitatory action potentials evoked by the background activity.
B: Cost of the action potentials (both excitatory and inhibitory) evoked by the background activity. C: Total resting
cost obtained by summing A and B. D: The total cost of the network activity is plotted against the output of the
network (the total post-synaptic firing rate). Filled areas represent individual contributions of each cost component:
cost of action potentials from the external population, cost of the excitatory synaptic currents, and cost of the
post-synaptic (evoked) action potentials. As Pext increases, the contribution of external action potentials to the
overall cost decreases. With increasing arec, the contribution of excitatory synaptic currents increases. E: The cost of
increasing the mean input by one action potential (wAP, Eq. 39) is significantly lower for higher Pext. However,
although the difference between Pext = 1% and Pext = 20% is approximately 10-fold, the difference between
Pext = 20% and Pext = 100% is only approximately 2-fold, as the cost of the external population starts to contribute
less to the overall cost.
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Fig 4. Shared input decreases the gain and increases the individual trial-to-trial variability. A-C: The
input intensity λext needed to evoke a given firing rate (x-axis) with different connection probabilities Pext relative to
the input intensity for Pext = 1%. A: arec = 0nS, B: arec = 0.2 nS, C: arec = 1nS. For higher Pext, higher values of
λext are needed to achieve the same post-synaptic firing rates as with lower values of Pext. This effect becomes more
pronounced in stronger recurrent synapses (E-F). D-F: Gain of the network (Eq. 40). A higher Pext leads to a lower
gain of the population activity. G-I: Higher values of Pext also increase the Fano factor of individual neurons.

3.6 Optimal regimes for metabolically efficient information
transmission

We illustrated that the recurrence strength 1) increases the metabolic cost of the neural
activity and 2) decreases the trial-to-trial variability of the population response by
decreasing the correlations between the neurons. Similarly, the increased probability of
a synapse from an external neuron to a neuron in the excitatory or inhibitory
population decreases the cost of the neural activity but increases the trial-to-trial
variability of the population response by increasing the noise correlations. To find the
balance between the cost of the network activity (Eq. 26) and the mutual information
between the input and the output (Eq. 22), we calculated the information-metabolic
efficiency, which maximizes the ratio of the mutual information to the cost of the
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Table 2. capacity-cost function values (in bits)

Pext \W (1012ATP) 2 3 4 5 6 7 8 10 12 15 20 30
0.02 2.30 3.19 3.73 4.11 4.40 4.63 4.83 5.13 5.36 5.62 5.89 6.05
0.05 3.14 3.96 4.41 4.73 4.96 5.14 5.28 5.50 5.63 5.78 5.89 5.97
0.10 3.50 4.23 4.62 4.88 5.08 5.22 5.35 5.52 5.63 5.74 5.86 5.96
0.20 3.68 4.31 4.65 4.89 5.06 5.20 5.31 5.48 5.61 5.73 5.82
0.50 3.64 4.21 4.54 4.77 4.94 5.09 5.19 5.36 5.48 5.57
1.00 3.53 4.08 4.40 4.62 4.79 4.93 5.04 5.20 5.30 5.39

network activity (Eq. 28).
For low values of Pext (≤ 10%), increasing the strength of the recurrent input did

not lead to an increase in the information-metabolic efficiency. For higher values of Pext

the information-metabolic efficiency was maximized for arec between 0.1 nS and 0.5 nS
(Fig. 5A-B), meaning that the strength of the recurrent excitatory synapses was 2× to
5× lower that the strength of the synapses from the external population.

Moreover, varying Pext had a significant effect on the information-metabolic
efficiency across all values of arec. Namely, low values of Pext resulted in lower values of
information-metabolic efficiency across all values of arec, showing that shared input
from the external population is beneficial for metabolically efficient information
transmission. Overall, the highest values of information-metabolic efficiency
(E ≥ 2 bit/1012ATP) were reached for arec between 0.05 nS and 0.5 nS and Pext between
20% and 100% (Fig. 5B).

We analyzed the effect of the resting cost (Fig. 3A-C) by setting the resting cost in
all cases equal to W0, the resting cost of the feedforward network. This did not have a
significant effect on the information-metabolic efficiencies (S3 Fig).

Neural circuits might not necessarily maximize the ratio of information to cost.
Instead, neurons and neural circuits could modulate their properties to maximize
information transmission with the available energy resources (Balasubramanian et al.,
2001). For example, neurons in the mouse visual cortex have been shown to decrease the
conductance of their synaptic channels after food restriction (Padamsey et al., 2022).

Accordingly, we studied how the optimal strength of recurrent synapses changes with
the available resources. We calculated the optimal value of arec for different values of
available resources (3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, and 40 ×1012 ATP). In Fig. 5C-H,
we plotted C(W ; arec), the capacity-cost function (Eq. 27) extended by one dimension
with arec. For each cost W , the optimal arec is highlighted, and the corresponding
contour of C(W ) is shown (see Tab. 2 for the values of C(W )). With decreasing W , the
optimal value of arec typically decreases. This effect is more robust with high values of
Pext, because the contours are more curved at the optimum.

We calculated the extended capacity-cost functions using input distributions
obtained from the low-noise approximation. To verify that the low noise approximation
applies in the case of the studied system, we compared these results to the
information-metabolic efficiency obtained with the Jimbo-Kunisawa algorithm. The
relative difference did not exceed 10% and did not have a significant impact on the
information-metabolic efficiency heatmap structure (S4 Fig).

4 Discussion

Populations in the cortex that transmit information by their summed (or averaged)
activity can be considered as a low noise information channel, due to the decrease in
trial-to-trial variability (Kostal and Lansky, 2013). The decrease in the trial-to-trial
variability of the response will be lower in the presence of positive noise correlations
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Fig 5. Information transmission with cost constraints. A: Information-metabolic efficiency E (Eq. 28) for different
values of recurrence strength arec. Pext is color-coded. B: Contour plot of the information-metabolic efficiency. Contours
are at 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, and 2 bits/s. C-H: Contour plots showing the capacity-cost function C(W ) (Eq. 27)
with dependence on the recurrence strength arec for different values of Pext. The contours show the maximal capacities
constraint at different values of W (see Tab. 2 for the costs and capacity values at the contours). The heatmaps in B-H
were calculated using piece-wise cubic 2D interpolation (SciPy interpolator CloughTocher2DInterpolator (Virtanen et al.,
2020)) from the grid calculated with Pext values 1%, 2%, 3%, 5%, 10%, 20%, 50%, 80%, 100% and arec values 0, 0.01, 0.02,
0.03, 0.05, 0.1, 0.2, 0.3, 0.5, and 1 nS.
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(Abbott and Dayan, 1999). Positive noise correlations can be reduced by inhibitory
feedback, which, however, increases the cost of the neural activity (Barta and Kostal,
2019).

In our work, we studied the balance between increasing the transmitted information
by decreasing the noise correlations and the associated increase in the cost of the
activity. We showed that in a linear system, if the Fano factor of the population activity
and the ratio g

w0FF
(g is the gain of the system, or slope of the stimulus-response curve,

w0 is the slope of the stimulus-cost curve) remain constant, the cost-constrained
capacity will remain constant as well.

We proceeded to calculate the stimulus-response relationship and the metabolic cost
for a more biologically realistic neural system. In the studied system, the population
Fano factor could not be considered constant. Instead, correlations between neurons
increased with the mean output of the system, and the mean Fano factor of single
neurons was also dependent on the mean output of the system, leading to complex
dependence of the population Fano factor on the mean output of the system (Fig.
2D-F). We showed that reducing the noise correlations by strengthening the inhibitory
feedback decreases the population Fano factor for large values of Pext but may increase
the population Fano factor for low values of Pext due to an increase of the mean single
neuron Fano factor FF0.

We illustrated the effect of inhibition-dominated recurrence and shared input on the
metabolic cost of neural activity. An increased strength of recurrence increased the cost
of excitatory synaptic currents due to the stronger excitatory synapses and stronger
input from the external population, as well as the cost of the activity of the external
population. A higher connection probability from the external population (higher
shared input probability) led to a decrease in the external population activity cost, as
the overall activity of the external population could be lower to result in the same mean
input to the post-synaptic neurons. On the other hand, due to less variable input to
single neurons with high values of Pext, a higher mean input was required across all
neurons to evoke the same mean post-synaptic activity.

We found that high values of Pext were beneficial for metabolically efficient
information transmission, despite the increased noise correlations. For high values of
Pext, increasing the recurrence strength was also beneficial, suggesting that the two
mechanisms - decreasing input cost by high connection probability from the external
population Pext and decreasing noise correlations by recurrent activity may act together
to produce a metabolically efficient code.

Increasing the recurrence strength can lead to a 10% to 15% increase in the
information-metabolic efficiency. The magnitude of the increase is dependent on the cost
of the action potentials. If the cost of synaptic currents is negligible compared to the
cost of the action potentials, there would be a higher benefit in increasing the inhibitory
feedback since the increases in the cost of the synaptic current could also be neglected.

Although neurons in the cortex also connect to neighboring areas of the cortex and
not only within the studied subpopulation, we did not consider the cost of synaptic
currents evoked in neurons not involved in our simulation. We assume that such
synaptic currents would be part of the background activity of a different area.
Therefore, if we included these costs and considered multiple cortical areas, we would
have included the background activity cost multiple times.

In our model of the cortical area, we considered two neural subpopulations:
excitatory and inhibitory. Each subpopulation was homogeneous, but we set the
threshold of the inhibitory neurons lower to mimic the behavior of fast-spiking
inhibitory neurons. The difference between excitatory, regular spiking neurons and
inhibitory, fast-spiking neurons is often described not only by differences in the
threshold but also in differences in the adaptation properties (Kobayashi et al., 2009;
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Zerlaut et al., 2017; Bernardi et al., 2021). In our case, we did not consider adaptation
for simplicity because estimating the information capacity of a neural system with
adaptation is computationally considerably more difficult (Barta and Kostal, 2019).

In our work, we assumed that the neural circuit maximizes the mutual information
between the input and the output neurons while minimizing the cost of the neural
activity. Such an approach does not provide any information about how the information
is encoded. It only calculates the limit on the amount of information that can be
reliably transmitted. Yet, the principles of mutual information maximization have
proven very useful in explaining the properties of neural systems. For example, the
tuning curves of blowfly’s contrast-sensitive neurons are adapted to the distribution of
contrasts encountered in the natural environment (Laughlin, 1981); the power spectrum
of distribution of odor in pheromone plumes follows the power spectrum predicted for
an optimal input to olfactory receptor neurons (Kostal et al., 2008); distributions of
post-synaptic firing rates of single neurons during in-vivo recordings follow distributions
predicted from cost-constrained mutual information maximization (Treves et al., 1999;
de Polavieja, 2002, 2004).

By assuming a particular coding scheme, it is possible to place further constraints on
the complexity of information encoding, with the assumption that complex codes are
not an efficient way to transmit information (Kostal and Kobayashi, 2015, 2019). We
did not attempt this in our study. However, it would be interesting to study whether
inhibitory feedback decreases or increases the encoding complexity.

We have shown that a cortical area can adapt to the amount of available energy
resources. When resources are scarce, information transmission can be adapted by
weakening the synaptic weights, thus expending fewer resources to reduce the noise
correlations. Such a mechanism is implemented in the mouse visual cortex (Padamsey
et al., 2022). Padamsey et al. showed that in food-restricted mice, the orientation
tuning curves of individual orientation-sensitive neurons in the visual cortex become
broader due to weakened synaptic conductances. In our work, we studied the properties
of a neuronal population instead of single neurons. In particular, we considered a
population encoding the stimulus intensity instead of the stimulus identity, such as
orientation. An extension this model to a situation in which stimulus identity is
encoded and shared input is introduced due to the overlap of receptive fields would be
interesting.

Neurons recorded in-vivo typically exhibit a Fano factor close to 1.0 and constant
over a broad range of post-synaptic firing rates (Gur et al., 1997; Geisler and Albrecht,
1997; Shadlen and Newsome, 1998). In the optimal regimes with stronger recurrent
synapses, the Fano factor decreased only very slowly over the studied range of
post-synaptic firing rates (up to 30Hz in a single neuron). With weaker synaptic
strengths, the Fano factor of a single neuron decreases rapidly with an increasing
post-synaptic firing rate. Our model predicts that fewer available resources would lead
to weaker recurrent synapses. This hypothesis is straightforward to test by calculating
the Fano factors during stimulus presentation (both population and single neuron) in
food-restricted animals and comparing them to controls. We expect that the population
Fano factor will increase (alternatively, the noise correlations will increase) with food
scarcity, and single neuron Fano factors will decrease.

Supporting information

S1 Fig. input-output relationship of a single neurons. To exclude the network
effects, we plotted the tuning curves for the feedforward network separately for the
excitatory (blue) and inhibitory (yellow) neurons. The thick line represents the median
response across the neurons, which shows that their tuning curves are convex in the
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studied range. The shaded area shows the spread of the tuning curves across neurons
(2.5 to 97.5 percentile). With low values of Pext, the tuning curves across neurons vary
significantly and are skewed to the higher firing rates.

S2 Fig. S2 Fig. Fixing the number of external connections to each neuron.
Same as Fig. 4, but exactly kext

Pext

100% external neurons connected to each excitatory and
inhibitory neuron. This removed a large part of the dependence on Pext seen in Fig. 4.

S3 Fig. Effect of equalizing the resting cost on the information-metabolic
efficiency. We observed that the cost of the resting state was different for different
recurrence strengths arec (Fig. 3A-C). This could potentially explain the higher
information-metabolic efficiency E (Eq. 28) for intermediate values of arec and its
decrease for high values of arec. To quantify the effect of the resting cost, we set the
resting cost in each case to the resting cost of the feedforward network W0(arec = 0).
The differences in the cost of the resting state did not have a qualitative effect on the
conclusions. A: The same contour plot as in Fig. 5B. B: Contour plot with equalized
resting costs (contours as in Fig. 5B: 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8 and 2 bits/s). C:
Heatmap of the relative differences.

S4 Fig. Accuracy of information-metabolic efficiency approximation. To
calculate the capacity-cost functions, we calculated the mutual information using Eq.
(22) with the input probability distribution calculated from Eqs. (30) and (32). Here we
compare the information-metabolic efficiencies calculated with the approximation and
the Jimbo-Kunisawa algorithm. A: The same contour plot as in Fig. 5B with
information-metabolic efficiencies calculated with the Jimbo-Kunisawa algorithm. B:
Information-metabolic efficiencies calculated with the Fisher-information-based input
distribution. C: Heatmap of the relative differences. Note that the approximation can
only reach values lower than the actual information-metabolic efficiency.
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S1 Fig. input-output relationship of single neurons. To exclude the network effects, we plotted the tuning curves
for the feedforward network separately for the excitatory (blue) and inhibitory (yellow) neurons. The thick line represents
the median response across the neurons, which shows that their tuning curves are convex in the studied range. The shaded
area shows the spread of the tuning curves across neurons (2.5 to 97.5 percentile). With low values of Pext, the tuning
curves across neurons vary significantly and are skewed to the higher firing rates.
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S2 Fig. Fixing the number of external connections to each neuron. Same as Fig. 4, but exactly kext
Pext

100%
external neurons connected to each excitatory and inhibitory neuron. This removed a large part of the dependence on Pext

seen in Fig. 4.
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Effect of equalizing the resting cost on the information-metabolic efficiency. We observed that the cost of the
resting state was different for different recurrence strengths arec (Fig. 3A-C). This could potentially explain the higher
information-metabolic efficiency E (Eq. 28) for intermediate values of arec and its decrease for high values of arec. To
quantify the effect of the resting cost, we set the resting cost in each case to the resting cost of the feedforward network
W0(arec = 0). The differences in the cost of the resting state did not have a qualitative effect on the conclusions. A: The
same contour plot as in Fig. 5B. B: Contour plot with equalized resting costs (contours as in Fig. 5B: 0.6, 0.8, 1, 1.2, 1.4,
1.6, 1.8 and 2 bits/s). C: Heatmap of the relative differences.

Accuracy of information-metabolic efficiency approximation. To calculate the capacity-cost functions, we
calculated the mutual information using Eq. (22) with the input probability distribution calculated from Eqs. (30) and
(32). Here we compare the information-metabolic efficiencies calculated with the approximation and the Jimbo-Kunisawa
algorithm. A: The same contour plot as in Fig. 5B with information-metabolic efficiencies calculated with the
Jimbo-Kunisawa algorithm. B: Information-metabolic efficiencies calculated with the Fisher-information-based input
distribution. C: Heatmap of the relative differences. Note that the approximation can only reach values lower than the
actual information-metabolic efficiency.
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