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Abstract

Shared input to a population of neurons induces noise correlations, which can decrease
the information carried by a population activity. Inhibitory feedback in recurrent neural
networks can reduce the noise correlations and thus increase the information carried by
the population activity. However, the activity of inhibitory neurons is costly. This
inhibitory feedback decreases the gain of the population. Thus, depolarization of its
neurons requires stronger excitatory synaptic input, which is associated with higher
ATP consumption. Given that the goal of neural populations is to transmit as much
information as possible at minimal metabolic costs, it is unclear whether the increased
information transmission reliability provided by inhibitory feedback compensates for the
additional costs. We analyze this problem in a network of leaky integrate-and-fire
neurons receiving correlated input. By maximizing mutual information with metabolic
cost constraints, we show that there is an optimal strength of recurrent connections in
the network, which maximizes the value of mutual information-per-cost. For higher
values of input correlation, the mutual information-per-cost is higher for recurrent
networks with inhibitory feedback compared to feedforward networks without any
inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a
recurrent network can be inferred from metabolically efficient coding arguments and
that decorrelation of the input by inhibitory feedback compensates for the associated
increased metabolic costs.

Author summary

Information processing in neurons is mediated by electrical activity through ionic
currents. To reach homeostasis, neurons must actively work to reverse these ionic
currents. This process consumes energy in the form of ATP. Typically the more energy
the neuron can use, the more information it can transmit. It is generally assumed that
due to evolutionary pressures, neurons evolved to process and transmit information
efficiently at high rates but also at low costs. Many studies have addressed this balance
between transmitted information and metabolic costs for the activity of single neurons.
However, information is often carried by the activity of a population of neurons instead
of single neurons, and few studies investigated this balance in the context of recurrent
neural networks, which can be found in the cortex. In such networks, the external input
from thalamocortical synapses introduces pairwise correlations between the neurons,
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complicating the information transmission. These correlations can be reduced by
inhibitory feedback through recurrent connections between inhibitory and excitatory
neurons in the network. However, such activity increases the metabolic cost of the
activity of the network. By analyzing the balance between decorrelation through
inhibitory feedback and correlation through shared input from the thalamus, we find
that both the shared input and inhibitory feedback can help increase the
information-metabolic efficiency of the system.

1 Introduction

The efficient coding hypothesis poses that neurons evolved due to evolutionary pressure
to transmit information as efficiently as possible [1]. Moreover, the brain has only a
limited energy budget, and neural activity is costly [2, 3]. The metabolic expense
associated with neural activity should, therefore, be considered, and neural systems
likely work in an information-metabolically efficient manner, balancing the trade-off
between transmitted information and the cost of the neural activity [4, 5, 6, 7, 8].

The principles of information-metabolically efficient coding have been successfully
applied to study the importance of the excitation-inhibition balance in neural systems.
It has been shown that the mutual information between input and output per unit of
cost for a single neuron is higher if the excitatory and inhibitory synaptic currents to
the neuron are approximately equal if the source of noise lies in the stochastic nature of
the voltage-gated Na+and K+channels [9]. In a rate coding scheme, where the source of
noise lies in the random arrival of pre-synaptic action potentials, the mutual
information per unit of cost has been shown to be rather unaffected by the increase of
pre-synaptic inhibition associated with an excitatory input [10].

However, the balance of excitation and inhibition is likely to be more important in
the context of recurrent neural networks than in the context of single neurons. In
recurrent neural networks, the inhibitory input to neurons associated with a stimulus
[11] arises as inhibitory feedback from a population of inhibitory neurons. The
inhibitory feedback prevents a self-induced synchronization of the neural activity [12]
and reduces noise correlations (correlations between neurons calculated across trials of
the same stimulus) induced by shared input to neurons in the population [13, 14, 15]. If
noise correlations have the same sign as signal correlations (correlations between
neurons calculated across different stimuli), then noise correlations are detrimental to
information transmission by neural populations [16, 17, 18]. Information is likely
transmitted by the activity of a population of neurons instead of a single neuron [19],
therefore, when studying the effect of excitation-inhibition balance on information
transmission, it is essential to consider the context of neural populations. In the case of
a population of neurons tuned to the same stimulus, positive noise correlations decrease
the information content in the population.

Several studies have analyzed the effect of noise correlations on information
transmission properties [16, 17, 20]. However, these studies did not analyze the
relationship between the noise correlations and the metabolic cost of neural activity. In
our work, we consider a computational model of a small part of the sensory cortex and
the noise correlations caused by shared connections from an external thalamic
population. The noise correlations may then be reduced by inhibitory feedback, which,
however, increases the cost of the neural activity [10]. Our point of interest is the
trade-off between improved information transmission due to lower noise correlations and
the increase in metabolic costs due to stronger inhibitory feedback.
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2 Results

2.1 Constrained information maximization in a simple linear
model

In order to gain an insight into what affects the information-metabolic efficiency of a
neural population, we first solve the problem for a simple linear system. The mean
response of the system is given by γ(λext) = gλext, where λext is the stimulus and g is
the gain of the system. We measure the trial-to-trial variability of the response with the
Fano factor, defined as

FF =
Var[N ]

E[N ]
, (1)

where N is a random variable representing the response n of the network to some
stimulus. In this section, we assume the Fano factor to be constant, and we assume that
the output is continuous and normally distributed. Therefore, the input-output
relationship is described by the conditional probability

f(n|λext) =
1√

2gλextFF
exp

[
−1

2

(
n− gλext

gλextFF

)2
]
. (2)

We assume that the cost of the activity w(λext) depends linearly on the input:

w(λext) = w0λext +W0 =
w0

g
γ(λext) +W0, (3)

where W0 is the cost of the resting state.
We treat the input λext as a random variable Λ with probability distribution

function p(λext). We can then calculate the average metabolic cost as

Wp =

∫ λmax
ext

λmin
ext

p(λext)w(λext) dλext. (4)

The mutual information between the input and the output I(Λ;N) is calculated as

I(Λ;N) =

∫ λmax
ext

λmin
ext

p(λext)i(λext;N) dλext, (5)

i(λext;N) =

+∞∑
n=0

i(λext;n)qp(n), (6)

i(λext;n) = log2
f(n|λext)

qp(n)
, (7)

qp(n) =

∫ λmax
ext

λmin
ext

p(λext)f(n|λext) dλext, (8)

where f(n|λext) is the probability distribution function of N given that Λ = λext,
p(λext) is the input probability distribution, i(λext;n) is the amount of information that
an observation of n spikes gives us about the stimulus λext, i(λext;N) is then the
average amount of information we get from the input λext, qp(n) is the marginal output
probability distribution.

The capacity-cost function C(W ) is the lowest upper bound on the amount of
mutual information (in bits) achievable given the constraint that Wp < W :

C(W ) = sup
p(λext):Wp<W

I(Λ;N). (9)
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The information-metabolic efficiency E is then the maximal amount of mutual
information per molecule of ATP between the input and the output:

E =
C(W ∗)

W ∗ , (10)

W ∗ = argmax
W∈[0,+∞)

C(W )

W
. (11)

The capacity-cost function can be obtained numerically with the Blahut-Arimoto
algorithm [21]. The information-metabolic efficiency can be conveniently obtained
directly with the Jimbo-Kunisawa algorithm [22, 23]. However, if the Fano factor is very
small, a lower bound on the capacity-cost function can be found analytically [24, 25]. In
the low noise approximation, the optimal input distribution maximizing the mutual
information constrained by metabolic expenses W is given by

p(λext) =

√
J(λext)

2πe
exp [λ1 − 1− λWw(λext)] . (12)

where J(λext) is the Fisher information and λ1 and λW are the Lagrange multipliers
which can be obtained from the normalization condition:∫ λmax

ext

λmin
ext

p(λext)w(λext) dλext (13)

and the average metabolic cost constraint (Eq. 4). In the second-moment
approximation [26, 27], the Fisher information is given by

J(λext) =
µ′(λext)

2

σexc(λext)2
, (14)

where µ(λext) is the mean response to the external input λext, µ
′(λext) is the derivative,

and σexc(λext) is the standard deviation of the spike counts at input intensity λext. The
low noise estimate on the capacity-cost function is then

Clow(W ) = 1− λ1 + λWW. (15)

the information-metabolic efficiency can be conveniently obtained directly with the
Jimbo-Kunisawa algorithm [22, 23].

In the case of our simple linear system the Fisher information (Eq. 14) is

J(λext) =
g

λextFF
, (16)

and the probability distribution derived from the low-noise approximation (Eq. 12) is
then

p(λext) =

√
1

2πe

g

λextFF
exp(λ1 − 1− λWw0λext) exp(−λWW0). (17)

After applying the normalization conditions (Eqs. 4 and 13) and using Eq. (15) we
obtain the lower bound on the capacity-cost function:

Clow(W ) =
1

2
log

[
(W −W0)

1

wAP

1

FF

]
, (18)

wAP =
w0

g
, (19)

where wAP is the cost of increasing the output intensity by one action potential.
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The gain g, cost scaling w0, and Fano factor FF cannot be considered constant for
real neural populations. However, Eq. (18) provides an insight into the importance of
these properties, which we will study numerically for a more realistic neural system.

In the following, we use

g = µ′
ext(λext), (20)

w0 = w′(λext). (21)

Next, we analyze the information-metabolic efficiency of a recurrent spiking neural
network, consisting of 800 excitatory and 200 inhibitory neurons. This network may
represent a small area in the cortex, tuned to the same external stimulus, such as
approximately a sphere of a 145µm radius in the rat barrel cortex, which comprises
only a small fraction of a single barrel [28, 29]. In such case, the external input is the
input from a single barreloid in the thalamus. We assume that the role of this
subnetwork is to process information about the stimulus intensity. We analyze the
information-metabolic efficiency in two extreme cases of the readout of the network.
First, we assume that the output of the network is read out as the summed rate of all
the neurons in the network, and second, we assume that the brain acts as an efficient
unbiased decoder with access to the rate of each neuron. In each case, we calculate the
rate of each neuron as the number of fired spikes in a time window ∆T = 1 s.

2.2 Inhibitory feedback decorrelates the neural activity

In our model, 1000 external neurons randomly connect to the excitatory and inhibitory
subpopulations with a connection probability Pext (Fig 1). Increasing Pext increases the
mean pairwise correlation between the rates of the neurons in the network (feedforward
network, Fig 1B). These correlations could be removed by recurrent connections.
Initially, we set the excitatory recurrent synaptic amplitude as aexc = 0.01 nS to create
a small perturbation from the feedforward network and varied the scaling α determining
the amplitude of inhibitory synapses (ainh = αaexc) from 15 to 25, which leads to the
amplitude of inhibitory post-synaptic potentials being sever-fold (approximately 2× to
8×, depending on α and on the memory potential) larger than the excitatory
post-synaptic potentials, as commonly chosen in network modelling [30, 31, 32, 29].
Correlations between neurons were decreased for α ≥ 20 (Fig 1C), which was also
associated with stronger negative net current from the recurrent synapses (Fig 1D). For
the network considered further in our work we set α = 20. Simultaneously increasing
the strength of the recurrent synapses with fixed α led to a further decrease of the
correlations among the neurons (Fig 1E) while further decreasing the net current from
the recurrent synapses (Fig 1F).

2.3 Fano factor of single neurons vs. a population

In an inhibition-dominated network, the input needed from the external population in
order to evoke a given average firing rate has to be higher than in the case of the
feedforward network. The resulting increase in synaptic noise leads to higher Fano
factor in the LIF model (Fig 2A, 2B, and 2C; see also [33]).

If we assume that the downstream areas decode the stimulus intensity from the
summed activity of the network, we need to look at the Fano factor of the summed
activity, that is, ratio of variance of the sum to the mean of the sum across the trials of
duration ∆T = 1 s. In the case of the total population activity, however, the pairwise
correlations between the neurons have a significant effect on the Fano factor. By
denoting the random variable representing the number of spikes of the i-th neuron
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Fig 1. Inhibitory feedback decreases noise correlations. A: Schematic illustration of the simulated neural network.
Poisson neurons in the external population make random connections to neurons in the excitatory and inhibitory
subpopulations. The connection probability Pext ∈ [0.01, 1] is varied to achieve different levels of shared external input to
the neurons. The neurons in the inhibitory (inh.) and excitatory (exc.) subpopulations make recurrent connections (exc.
to exc., exc. to inh., inh. to inh., inh. to exc.) with probability Prec = 0.2. The strength of those connections is
parametrized by arec. B: Mean pairwise correlations between any two neurons in the exc. and inh. subpopulations plotted
against the mean output of the network for different values of Pext in a feedforward network (arec = 0nS). Pairwise
correlations are calculated from the number of spikes each neuron fires in a time window ∆T = 1 s across many trials of
the simulation. The plot is vertically separated into two parts to also illustrate the smaller differences at lower values of
Pext. C: Mean pairwise correlations as in B, for different values of α (ratio of inhibitory-to-excitatory synaptic strength),
arec = 0.01 nS. The black line represents the pairwise correlations in a feedforward network without any recurrent
connections (arec = 0). D: Total current from recurrent synapses for different values of α, as in C. E-F: Same as in C-D,
but with fixed α = 20 and different values of arec.

observed during time window ∆T as Ni, we get for the Fano factor of the population
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Fig 2. Fano factor of single neurons and of populations. A-C: Mean Fano factor of individual neurons for
different values of Pext: 0.01 (A), 0.2 (B), 1 (C). The strength of the recurrent synapses (arec) is color-coded. The
mean Fano factor increases with the strength of the recurrent synapses. D-F: Same as in A-C but for the Fano
factor of the population activity. The points represent the population Fano factor obtained from the simulation, and
the lines are a weighted 7th-degree polynomial, used only as a visual aid. For Pext = 0.01, the increase in Fano factor
of individual neurons (A) can have a stronger effect on the population Fano factor than decreasing the pairwise
correlations, resulting in an increase of the population Fano factor with high values of arec (D). For higher values of
Pext, the pairwise correlations greatly increase the population Fano factor, which then decreases with increasing arec.

activity:

FF =
Var(

∑
i Ni)

E [
∑

i Ni]
(22)

=

∑
i Var(Ni)∑
i E [Ni]

+
2
∑

i<j Cov(Ni, Nj)∑
i E [Ni]

(23)

=

∑
i Var(Ni)∑
i E [Ni]

(
1 +

2
∑

i<j Cov(Ni, Nj)∑
i Var (Ni)

)
(24)

=
v

µ

(
1 + (ntot − 1)

c

v

)
(25)

≈ FF0 (1 + kr) (26)

where c is the mean pairwise covariance, v the mean variance of a neuron, µ is the mean
number of spikes in ∆T , ntot is the number of neurons, and r is the Pearson correlation
coefficient. The last approximation holds for neurons with identical variances and
pairwise covariances [16]. It provides an insight into how the pairwise correlations and
Fano factor of individual neurons affect the Fano factor of the total activity. If the
correlations or number of neurons are small (r · ntot ≪ 1), the decorrelation by
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strengthening the recurrent synapses does not significantly decrease the population Fano
factor. Instead, the population Fano factor may increase due to the increase of the Fano
factor of individual neurons (Fig 2D, Pext = 0.01). If greater correlations are induced
due to the shared input to the network, the correlations have a dominating effect on the
population Fano factor, which can then be greatly decreased by strengthening the
recurrent synapses and in turn decreasing the pairwise correlations (Fig 2E and 2F).

2.4 Inhibitory feedback is metabolically costly

2.4.1 Stronger recurrence strength increases the cost of the resting state

We calculated the cost of the activity by summing the cost of action potentials from the
excitatory, inhibitory, and external subpopulations, and the cost of excitatory synaptic
currents in the excitatory and inhibitory subpopulations. These excitatory currents may
be evoked by action potentials from the external or excitatory subpopulations, or from
the background input. We did not consider the cost of synaptic currents evoked in
neurons not involved in our simulation. We assume that such synaptic currents would
be part of the background activity of a different area. Therefore, if we included these
costs and considered multiple cortical areas, we would have included the background
activity cost multiple times. We also did not include the cost of synaptic currents in the
external population.

The cost of the resting state is an important factor for information-metabolic
efficiency [10]. In our network, increasing the recurrence strength decreased the
spontaneous activity of the neurons, due to inhibition dominating the recurrent currents.
However, the simultaneous increase in the strength of the recurrent excitatory synapses
increased the cost of the excitatory synaptic currents (Fig 3A, 3B, and 3C), because the
spontaneous action potentials from the excitatory subpopulation evoke stronger
excitatory post-synaptic currents.

2.4.2 Inhibitory feedback decreases gain

Because the net current from recurrent synapses is hyperpolarizing, with stronger
recurrent synapses, a stronger excitatory current is necessary to bring the neuron to a
given post-synaptic firing rate, and higher pre-synaptic firing rates are necessary.
Therefore, the gain g of the network decreases, and with increasing arec the cost of
synaptic currents and the cost of external activity increase (Fig 3D and 3E).

2.5 Shared input decreases gain

The number of synapses from the external population for each neuron in the excitatory
and inhibitory subpopulations follows a binomial distribution:

p(k) =

(
next

k

)
P k
ext(1− Pext)

next−k, (27)

with the mean number of synapses given by next · Pext and variance next · Pext(1− Pext).
We scaled the firing rate of the individual neurons in the external population as
λ0
exc =

λexc

next·Pext
. Therefore the mean output to a single neuron was always λext,

independently of Pext and the variance of the input across neurons was λextnext
1−Pext

Pext
.

Given the convexity of the single neuron tuning curve in the analyzed input range
(S1 Fig) that out of two inputs with an identical mean λext, but different variances
across neurons, the input with the higher variance will lead to a higher average firing
rate. Assuming that the input across neurons follows a normal distribution with mean
λext and variance σ2 and that the single neuron tuning curve can be approximated by
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Fig 3. Metabolic cost of the network activity. A-C: Cost at resting state (λext = 0). A: Cost of the excitatory
synaptic currents from the background input (Eq. 35) and excitatory action potentials evoked by the background
input. B: Cost of the action potentials (both excitatory and inhibitory) evoked by the background input. C: Total
resting cost obtained by summing A and B. D: The total cost of the network activity is plotted against the output
of the network (the total post-synaptic firing rate). Filled areas represent individual contributions of each cost
component: cost of action potentials from the external population, cost of the excitatory synaptic currents, and cost
of the post-synaptic (evoked) action potentials. As Pext increases, the contribution of external action potentials to
the overall cost decreases. With increasing arec, the contribution of excitatory synaptic currents increases. E: The
cost of increasing the mean input by one action potential (wAP, Eq. 19) is significantly lower for higher Pext.
However, although the difference between Pext = 0.01 and Pext = 0.2 is approximately 10-fold, the difference between
Pext = 0.2 and Pext = 1 is only approximately 2-fold, as the cost of the external population starts to contribute less
to the overall cost.

an exponential function in the form of c1 exp(c2x), where x is the input intensity to the
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single neuron, we obtain the mean firing rate:∫ +∞

−∞

1

σ
√
2π

exp

[
− (x− λext)

2

2σ2

]
c1 exp(c2x) =

c1
2
exp

(c2
2
(c2σ

2 − 2λext)
)
, (28)

which grows with the standard deviation of the input.
Accordingly, we observed that networks with higher Pext needed higher λext in order

to produce the same mean PSFR as networks with lower Pext (Fig 4A, 4B, and 4C),
which translates to lower gain with higher Pext (Fig 4D, 4E, and 4F). Moreover, the
mean Fano factor of individual neurons increased with increasing Pext (Fig 4G, 4H, and
4I). This effect could be mostly removed by fixing the number of connections from the
external population to each neuron in the excitatory and inhibitory populations to
Pextnext (S2 Fig).

2.6 Optimal regimes for metabolically efficient information
transmission

We illustrated that the recurrence strength 1) increases the metabolic cost of the neural
activity and 2) decreases the population Fano factor by decreasing the correlations
between the neurons. Similarly, the increased probability of a synapse from an external
population (Pext) decreases the cost of the neural activity but increases the noise
correlations. The increased noise correlations then result in higher Fano factor (Eq. 26).
To find the balance between the cost of the network activity (Eq. 4) and the mutual
information between the input and the output (Eq. 5), we calculated the
information-metabolic efficiency, which maximizes the ratio of the mutual information
to the cost of the network activity (Eq. 10).

For low values of Pext (≤ 0.1), increasing the strength of the recurrent input did not
lead to an increase in the information-metabolic efficiency. For higher values of Pext the
information-metabolic efficiency was maximized for arec between 0.1 nS and 0.5 nS (Fig
5A and 5B), meaning that the strength of the recurrent excitatory synapses was 2× to
5× lower that the strength of the synapses from the external population.

Moreover, varying Pext had a significant effect on the information-metabolic
efficiency across all values of arec. Namely, low values of Pext resulted in lower values of
information-metabolic efficiency across all values of arec, showing that shared input from
the external population is beneficial for metabolically efficient information transmission.
Overall, the highest values of information-metabolic efficiency (E ≥ 2 bit/1012ATP)
were reached for arec between 0.05 nS and 0.5 nS and Pext between 0.2 and 1 (Fig 5B).

We analyzed the effect of the resting cost (Fig 3A, 3B, and 3C) by setting the
resting cost in all cases equal to W0, the resting cost of the feedforward network. This
did not have a significant effect on the information-metabolic efficiencies (S3 Fig).

Neural circuits might not necessarily maximize the ratio of information to cost.
Instead, neurons and neural circuits could modulate their properties to maximize
information transmission with the available energy resources [5]. For example, neurons
in the mouse visual cortex have been shown to decrease the conductance of their
synaptic channels after food restriction [35].

Accordingly, we studied how the optimal strength of recurrent synapses changes with
the available resources. We calculated the optimal value of arec for different values of
available resources (3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, and 40 ×1012 ATP). In Fig 5C,
5D, 5E, 5F, 5G, and 5H, we plotted C(W ; arec), the capacity-cost function (Eq. 9)
extended by one dimension with arec. For each cost W , the optimal arec is highlighted,
and the corresponding contour of C(W ) is shown (see Table 1 for the values of C(W )).
With decreasing W , the optimal value of arec typically decreases. This effect is more
robust with high values of Pext, because the contours are more curved at the optimum.
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Fig 4. Shared input decreases the gain and increases the individual Fano factor. A-C: The input
intensity λext needed to evoke a given firing rate (x-axis) with different connection probabilities Pext relative to the
input intensity for Pext = 0.01. A: arec = 0nS, B: arec = 0.2 nS, C: arec = 1nS. For higher Pext, higher values of
λext are needed to achieve the same post-synaptic firing rates as with lower values of Pext. This effect becomes more
pronounced in stronger recurrent synapses (E-F). D-F: Gain of the network (Eq. 20). A higher Pext leads to a lower
gain of the population activity. G-I: Higher values of Pext also increase the Fano factor of individual neurons.

We calculated the extended capacity-cost functions using input distributions
obtained from the low-noise approximation. To verify that the low noise approximation
applies in the case of the studied system, we compared these results to the
information-metabolic efficiency obtained with the Jimbo-Kunisawa algorithm. The
relative difference did not exceed 10% and did not have a significant impact on the
information-metabolic efficiency heatmap structure (S4 Fig).
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Fig 5. Information transmission with cost constraints. A: Information-metabolic efficiency E (Eq. 10) for
different values of recurrence strength arec. Pext is color-coded. B: Contour plot of the information-metabolic
efficiency. Contours are at 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, and 2.25 bits/s. C-H: Contour plots showing the
capacity-cost function C(W ) (Eq. 9) with dependence on the recurrence strength arec for different values of Pext. The
contours show the maximal capacities constraint at different values of W (see Table 1 for the costs and capacity
values at the contours). The heatmaps in B-H were calculated using piece-wise cubic 2D interpolation (SciPy
interpolator CloughTocher2DInterpolator [34]) from the grid calculated with Pext values 0.01, 0.02, 0.03, 0.05, 0.1, 0.2,
0.5, 0.8, 1 and arec values 0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, and 1 nS.
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Table 1. capacity-cost function values (in bits)

Pext \W (1012ATP) 2 3 4 5 6 7 8 10 12 15
0.02 2.71 3.55 4.06 4.43 4.71 4.93 5.12 5.40 5.61 5.83
0.05 3.50 4.26 4.69 4.99 5.20 5.36 5.48 5.66 5.79 5.89
0.10 3.83 4.49 4.85 5.09 5.27 5.42 5.53 5.68 5.77 5.87
0.20 3.97 4.54 4.87 5.10 5.27 5.41 5.51 5.67 5.78 5.86
0.50 3.90 4.45 4.78 5.01 5.18 5.31 5.41 5.56 5.64 5.67
1.00 3.78 4.32 4.64 4.87 5.03 5.16 5.27 5.40 5.46 5.50

2.7 Limits of efficient information transmission by the
population activity

So far we have assumed that the information about the stimulus is transmitted by the
total activity of the network. Such analysis provides us with important insights,
however, such simplistic decoding might not necessarily occur in the brain. To explore
the limits of decoding the input intensity from the population activity, we assert that
the brain can perform optimal unbiased decoding of the stimulus, i.e., for each stimulus
λext, it holds for the estimation of the input λ̂ that

E[λ̂] = λext, (29)

Var[λ̂] =
1

Jpop(λext)
, (30)

where the second equation corresponds to an estimator which saturates the Cramér-Rao
bound, and Jpop(λext) is the Fisher information about the stimulus from the population

activity. If we assume that λ̂ is distributed normally, we may then write the conditional
probability distribution function as:

f(λ̂|λext) =

√
Jpop
2

exp

[
−Jpop

2
(λext − λ̂)2

]
, (31)

obtaining a noisy identity channel with the noise given by the Cramér-Rao bound.
To reduce the effect of sampling bias, we estimated Jpop from the first 500 principal

components of the output and employed a bias correction (see section 4.4 for details).
Increasing the strength of recurrent connections (arec) increased the information
metabolic efficiency of the network (Fig 6). The increase was more pronounced with
higher values of Pext, and overall was the highest for Pext = 0.8 and Pext = 1. In this
sense, the results remain qualitatively very similar to the information-metabolic
efficiency calculated from the summed activity (Fig 5). Interestingly, however, our
results indicate that when using information from the entire population, not only the
summed activity, the noise correlations introduced by the shared input are less
detrimental, and Pext = 1 reaches the highest or close to highest values of the
information-metabolic efficiency.

3 Discussion

Information in the brain is likely transmitted by neuronal populations instead of single
neurons [19]. One of the benefits is that by considering the signal from many neurons, it
is possible to decrease the noise inherent to rate coding spiking neurons, and thus
increase the information carried by the system. The information increase is however
influenced by correlations between the neurons and their structure. In this work, we
investigated a situation where a population of neurons tuned to the same stimulus
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Fig 6. Information-metabolic efficiency with multi-dimensional output. A: Information-metabolic efficiency
E (Eq. 10) for different values of recurrence strength arec. Pext is color-coded. B: Contour plot of the
information-metabolic efficiency. Contours are at 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, and 2.75 bits/s.

transmits information about the stimulus intensity. In this case, positive noise
correlations decrease the information carried by the population.

We parameterized the shared input with the probability of connection from the
external population Pext. Higher Pext means that the firing rate of neurons in the
external population can be lower to maintain the same mean input to the
information-transmitting population. This way, the shared input, while increasing the
noise correlations, decreases the metabolic cost of the activity. In the studied system,
we could mitigate the noise correlations by strengthening the recurrent connections and
thus increasing the inhibitory feedback. However, to excite a population with inhibitory
feedback requires stronger input than to excite a population without inhibitory feedback,
and therefore, strengthening the recurrent connection increased the cost of the activity.

In our work, we studied the balance between increasing the transmitted information
by decreasing the noise correlations and the associated increase in the cost of the
activity. We showed that in a linear system, if the Fano factor of the population activity
and the ratio g

w0FF
(g is the gain of the system, or slope of the stimulus-response curve,

w0 is the slope of the stimulus-cost curve) remain constant, the cost-constrained
capacity will remain constant as well.

We proceeded to calculate the stimulus-response relationship and the metabolic cost
for a more biologically realistic neural system. In the studied system, the population
Fano factor could not be considered constant. Instead, correlations between neurons
increased with the mean output of the system, and the mean Fano factor of single
neurons was also dependent on the mean output of the system, leading to complex
dependence of the population Fano factor on the mean output of the system (Fig 2D,
2E, and 2F). We found that despite increasing the noise correlations, the shared input
helps with information-metabolically efficient information transmission. This was
further accented if the noise correlations are decreased by the increase in the inhibitory
feedback. Increasing the recurrence strength could lead to a 10% to 15% increase in the
information-metabolic efficiency. The magnitude of the increase was dependent on the
cost of the action potentials. If the cost of synaptic currents is negligible compared to
the cost of the action potentials, there would be a higher benefit in increasing the
inhibitory feedback since the increases in the cost of the synaptic current could also be
neglected.
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We illustrated the effect of inhibition-dominated recurrence and shared input on the
metabolic cost of neural activity. An increased strength of recurrence increased the cost
of excitatory synaptic currents due to the stronger excitatory synapses and stronger
input from the external population, as well as the cost of the activity of the external
population. A higher connection probability from the external population (higher
shared input probability) led to a decrease in the external population activity cost, as
the overall activity of the external population could be lower to result in the same mean
input to the post-synaptic neurons. On the other hand, due to less variable input to
single neurons with high values of Pext, a higher mean input was required across all
neurons to evoke the same mean post-synaptic activity.

In our model of the cortical area, we considered two neural subpopulations:
excitatory and inhibitory. Each subpopulation was homogeneous, but we set the
threshold of the inhibitory neurons lower to mimic the behavior of fast-spiking inhibitory
neurons. The difference between excitatory, regular spiking neurons and inhibitory,
fast-spiking neurons is often described not only by differences in the threshold but also
in differences in the adaptation properties [36, 37, 29]. In our case, we did not consider
adaptation for simplicity because estimating the information capacity of a neural system
with adaptation is computationally considerably more difficult [10].

In our work, we assumed that the neural circuit maximizes the mutual information
between the input and the output neurons while minimizing the cost of the neural
activity. Such an approach does not provide any information about how the information
is encoded. It only calculates the limit on the amount of information that can be
reliably transmitted. Yet, the principles of mutual information maximization have
proven very useful in explaining the properties of neural systems. For example, the
tuning curves of blowfly’s contrast-sensitive neurons are adapted to the distribution of
contrasts encountered in the natural environment [38]; the power spectrum of
distribution of odor in pheromone plumes follows the power spectrum predicted for an
optimal input to olfactory receptor neurons [39]; distributions of post-synaptic firing
rates of single neurons during in-vivo recordings follow distributions predicted from
cost-constrained mutual information maximization [40, 41, 42].

By assuming a particular coding scheme, it is possible to place further constraints on
the complexity of information encoding, with the assumption that complex codes are
not an efficient way to transmit information [43, 44]. We did not attempt this in our
study. However, it would be interesting to study whether inhibitory feedback decreases
or increases the encoding complexity.

We have shown that a cortical area can adapt to the amount of available energy
resources. When resources are scarce, information transmission can be adapted by
weakening the synaptic weights, thus expending fewer resources to reduce the noise
correlations. Such a mechanism is implemented in the mouse visual cortex [35].
Padamsey et al. [35] showed that in food-restricted mice, the orientation tuning curves
of individual orientation-sensitive neurons in the visual cortex become broader due to
weakened synaptic conductances. In our work, we studied the properties of a neuronal
population instead of single neurons. In particular, we considered a population encoding
the stimulus intensity instead of the stimulus identity, such as orientation. An extension
this model to a situation in which stimulus identity is encoded and shared input is
introduced due to the overlap of receptive fields would be interesting.

Neurons recorded in-vivo typically exhibit a Fano factor close to 1.0 and constant
over a broad range of post-synaptic firing rates [45, 46, 19]. In the optimal regimes with
stronger recurrent synapses, the Fano factor decreased only very slowly over the studied
range of post-synaptic firing rates (up to 30Hz in a single neuron). With weaker
synaptic strengths, the Fano factor of a single neuron decreases rapidly with an
increasing post-synaptic firing rate. Our model predicts that fewer available resources
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would lead to weaker recurrent synapses. This hypothesis is straightforward to test by
calculating the Fano factors during stimulus presentation (both population and single
neuron) in food-restricted animals and comparing them to controls. We expect that the
population Fano factor will increase (alternatively, the noise correlations will increase)
with food scarcity, and single neuron Fano factors will decrease.

4 Methods

4.1 Network model

We modeled a network consisting of three subpopulations: external (ext), excitatory
(exc), and inhibitory (inh). The external subpopulation consisted of Poisson neurons,
defined by their firing intensity λ0

ext (same for all the neurons in the subpopulation).
Neurons in the excitatory and inhibitory subpopulations were modeled as leaky
integrate-and-fire (LIF) neurons:

Cm
dV i

dt
= gL(EL − V i) + Iirec(V

i, t) + Iiext(V
i, t) + Iibcg(V

i, t), (32)

Iirec(V
i, t) = giexc(Ee − V i) + giinh(Ei − V i), (33)

Iiext(V
i, t) = giext(Ee − V i), (34)

Iibcg(V
i, t) = gibcg,exc(Ee − V i) + gibcg,inh(Ei − V i), (35)

τexc
dgiext
dt

= −giext +

next∑
j=1

∑
ts∈T j

ext

W ij
extδ(t− ts), (36)

τexc
dgiexc
dt

= −giexc +

nexc∑
j=1

∑
ts∈T j

exc

W ij
excδ(t− ts), (37)

τinh
dgiinh
dt

= −giinh +

ninh∑
j=1

∑
ts∈T j

inh

W ij
inhδ(t− ts), (38)

τexc
dgibcg,exc

dt
= (µbcg,exc − gibcg,exc) + τexcσbcg,exc

√
2

τexc
ηiexc(t), (39)

τinh
dgibcg,inh

dt
= (µbcg,inh − gibcg,inh) + τinhσbcg,inh

√
2

τinh
ηiinh(t). (40)

Irec is the synaptic current arising from the recurrent connections (exc. to exc., exc. to
inh., inh. to exc., inh. to inh.). Iext is the excitatory current from external neurons.
Ibcg is the current from synapses from neighboring cortex areas. T j

ext, T j
exc, T

j
inh

represent the spike times of the j-th external, excitatory, and inhibitory neuron
respectively. The matrices Wext, Wexc, Winh contain the synaptic connection
strengths, W ij

X = aX (X ∈ {ext, exc, inh}) if the j-th neuron connects to the i-th
neuron and 0 otherwise. The background (bcg) input from neighboring cortical areas is
modeled as the Ornstein-Uhlenbeck process with means µbcg,exc and µbcg,inh and
standard deviations of the limiting distributions σbcg,exc and σbcg,inh [47, 48]. We set
the values of the background activity to match the moments of an exponential Poisson
shot noise with rates λbcg,exc = 0.5 kHz and λbcg,inh = 0.125 kHz [49]:

µX = aXτXλX , (41)

σX = aX

√
λXτX

2
, (42)
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Table 2. Parameters of the LIF model

Membrane capacitance Cm 150 pF
Leak conductance gL 10 nS
Resting potential EL −80mV
Exc. reversal potential Ee 0mV
Inh. reversal potential Ei −80mV
Exc. synapse decay τexc 5ms
Inh. synapse decay τinh 5ms
Exc. threshold θexc −55mV
Inh. threshold θinh −60mV
Ext. synapse amplitude aext 1 nS
Exc. synapse amplitude aexc 0.01–1 nS
Inh. synapse amplitude ainh g · aexc
Exc. inh. synapse amplitude abcg,exc aext
Bcg. inh. synapse amplitude abcg,inh g · aext
Inh. scaling factor α 20

where X represents the excitatory or inhibitory background activity, leading to the ratio
of inhibitory to excitatory conductance of

gλbcg,inh

λbcg,exc
= 5, as observed in-vivo [48] and a

spontaneous firing rate of about 0.5Hz to 1Hz.
When the membrane potential V crosses the firing threshold (θexc, θinh) a spike is

fired and the membrane potential is reset to EL.
The network consisted of next = 1000 neurons in the external population, nexc = 800

neurons in the excitatory population, and ninh = 200 neurons in the inhibitory
population. The connections were set randomly with connection probability for the
recurrent connections (exc. to exc., exc. to inh., inh. to inh., inh. to exc.) set to
Prec = 0.2 and the connection probability from the external population (ext. to exc.
and ext. to inh., Pext) was varied from to 0.01 to 1 (Fig 1A). We created the connection
matrices WX by generating a matrix of random uniformly distributed numbers RX

from the interval [0, 1) and set W ij
X = aX if Rij

ext < Pext or R
ij
X < PX for X ∈ {exc, inh}.

The random matrix Rext was the same for all values of Pext. In simulations where we
controlled for the effects caused by a random number of connections from the external
population, we fixed the number of connections by setting only the k = nextPext

elements in each row of Wext non-zero, in the location of the k largest elements of the
i-th row of Rext.

The simulations were carried out using the Brian 2 package [50] in Python with a
0.1ms time step. Used parameters are given in Table 2.

4.2 Obtaining the input-output relationship of the network

We considered the total number of action potentials n from the excitatory and
inhibitory subpopulations in time window ∆T = 1 s as the output of the network. We
modeled the stimulus as the input from the thalamic neurons, parametrized by the
mean input rate to a single neuron:

λext = nextλ
0
ext

1

Pext
, (43)

where λ0
ext is the firing rate of a single neuron in the external population, nextλ

0
ext is the

input firing rate at Pext = 1, and 1
Pext

is a scaling factor to keep the mean input same
regardless of Pext. For each set of parameters (arec and Pext pair) we determined the
input λmax

ext (arec, Pext) for which the output reached 30 kHz. In order to obtain the
input-output relationship, we discretized the input space into 30 equidistant stimulus
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intensities: λi
ext(arec, Pext) =

i
30λ

max
ext (arec, Pext), where i = 0, . . . , 30. With a fixed

network connectivity, we simulated the network 10800 times for each λi
ext(arec, Pext).

We discretized the input space to 1000 equidistant stimulus intensities and estimated
the mean output µ(λext) and variance σ2(λext) for each intensity by linear interpolation
from the simulated data. We then estimated the input-output relationship, defined by
the conditional probability distribution f(n|λext) as a discretized normal distribution
for each λext, with corresponding mean and variance:

f(n|λext) =
1

Z
exp

(
− (x− µ(λext)

2)

σ2

)
, (44)

Z =

+∞∑
n=0

exp

(
− (x− µ(λext)

2)

σ2

)
. (45)

4.3 Metabolic cost of neural activity

In our calculations, we focus on the energy in the form of ATP molecules required to
pump out Na+ ions. We take into account the Na+ influx due to excitatory
post-synaptic currents, Na+ influx during action potentials, and Na+ influx to maintain
the resting potential. To this end, we follow the calculations in [2] and [3], which we
modify for our neuronal model.

We assume the standard membrane capacitance per area as cm = 1 µF/cm2 and the
cell diameter as D = 69µm, giving the total capacitance Cm = πD2cm = 150 pF.
Therefore, to depolarize a neuron by ∆V = 100mV the minimum charge influx is
∆V Cm = 1.5× 10−11 C and the minimum number of Na+ ions ∆V Cm

e

.
= 9.375× 107,

where e
.
= 1.6× 10−19 C is the elementary charge. The minimal number of Na+ ions is

then quadrupled to get a more realistic estimate of the Na+ influx due to the
simultaneous opening of the K+ channels [2]. The Na+ influx must be then pumped out
by the Na+/K+-ATPase, which requires one ATP molecule per 3 Na+ ions. The cost of
a single action potential can be then estimated as 4

3 ×9.375×107 ATP = 1.25×108 ATP.
However, about 75% of the metabolic costs associated with an action potential are
expected to come from the propagation of the action potential through the neuron’s
axons [51, 2]. Therefore, we estimate the total cost as 5.0× 108 ATP.

Next, we assume that the excitatory synaptic current is mediated by the opening of
Na+ and K+ channels with reversal potentials ENa = 90mV and EK = −105mV. For
the excitatory synaptic current, the following must hold

(gexc + gext)(V − Ee) = gNa(V − ENa) + gK(V − EK), (46)

gNa + gK = gext + gexc. (47)

Therefore:

INa =
gK(V − EK)

(gexc + gext)(V − Ee)
. (48)

The sodium entering with the sodium current INa must be pumped out by the
Na+/K+-ATPase and therefore we calculate the cost of the synaptic current as
1
3eINa∆T ATP, where ∆T is the time interval over which we are measuring the cost.

Each input to the network (parametrized by λext) is then associated with a cost,
which we express as

w(λext) =

(
(Nexcµexc + ninhµinh + nextλext

1

Pext
)WAP+

+
Nexc⟨IexcNa ⟩+ ninh⟨I inhNa ⟩

3e

)
∆T,

(49)
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where µexc = µexc(λext), µinh = µinh(λext) are the mean firing rates of a single
excitatory and inhibitory neuron (given the input λext), ⟨IexcNa ⟩ = ⟨IexcNa ⟩(λext) and
⟨I inhNa ⟩ = ⟨I inhNa ⟩(λext) are the average excitatory synaptic currents in a single excitatory
and inhibitory neuron.

4.4 Fisher information with multidimensional output

When we consider that the output of the network is either the full vector of firing rates,
or its low-dimensional projection, we can calculate the Fisher information as

Jpop(λext) = f ′(λext)
TΣ−1f ′(λext) +

1

2
Tr

(
Σ−1 ∂Σ

−1

∂λext
Σ−1 ∂Σ

−1

∂λext

)
, (50)

where f(λext) is the mean of the multidimensional response vector, Σ(λext) (dependence
of Σ was omitted for legibility) is the covariance matrix of the response components at
input λext, and Tr stands for the Trace operator. The first term in the equation is
analogous to the Fisher information in one-dimensional case (Eq. 14), while the second
term indicates how much information we gain about the stimulus from changes in the
covariance matrix. In our case, the second term was always very small compared to the
first term.

We performed dimensionality reduction of the output across all stimuli by principal
component analysis and used the first 500 principal components. We used 500, because
the increase in information-metabolic efficiency for higher number of components is
small, and the sampling bias is still relatively small (S5 Fig). To deal with the
remaining sampling bias we calculated the information-metabolic efficiency with the
Jimbo-Kunisawa for different numbers of trials and performed the quadratic
extrapolation method to estimate the unbiased information-metabolic efficiency [52, 53].
Overall, the results remain qualitatively very similar to the information-metabolic
efficiency calculated from the summed activity. However, we found the increase in
information-metabolic efficiency from using high-dimensional output is the largest for
higher values arec and Pext.

4.4.1 Correcting the sampling bias

In the case of a high-dimensional output, insufficient number of trials may lead to
perceived correlations in the data which are in fact not there, subsequently increasing
the calculated mutual information[54, 52, 55, 56, 53]. To decrease the sampling bias, we
first performed principal component analysis to decrease dimensionality of the output
and employed a quadratic extrapolation method to estimate the unbiased value of
information-metabolic efficiency. We used the Jimbo-Kunisawa algorithm to calculate
information-metabolic efficiency with 10800, 5400, and 2700 trials, obtaining the
estimates of E (Eq. 10): E10800, E5400, and E2700. We then assumed that the estimates
follow the following dependency on the number of trials k [52]:

Ek = E0 +
a

k
+

b

k2
. (51)

By solving the linear system we obtained the estimate of the unbiased
information-metabolic efficiency E0 (S5 Fig). We found that with 500 principal
components the bias is still relatively low, and further increasing the number of
components leads only to minor increase in the information-metabolic efficiency.
Therefore, we used the first 500 components to obtain the results in the Fig 6.
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Supporting information

S1 Fig input-output relationship of a single neurons. To exclude the network
effects, we plotted the tuning curves for the feedforward network separately for the
excitatory (blue) and inhibitory (yellow) neurons. The thick line represents the median
response across the neurons, which shows that their tuning curves are convex in the
studied range. The shaded area shows the spread of the tuning curves across neurons
(2.5 to 97.5 percentile). With low values of Pext, the tuning curves across neurons vary
significantly and are skewed to the higher firing rates.

S2 Fig S2 Fig Fixing the number of external connections to each neuron.
Same as Fig 4, but exactly kextPext external neurons connected to each excitatory and
inhibitory neuron. This removed a large part of the dependence on Pext seen in Fig 4.

S3 Fig Effect of equalizing the resting cost on the information-metabolic
efficiency. We observed that the cost of the resting state was different for different
recurrence strengths arec (Fig 3A-C). This could potentially explain the higher
information-metabolic efficiency E (Eq. 10) for intermediate values of arec and its
decrease for high values of arec. To quantify the effect of the resting cost, we set the
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resting cost in each case to the resting cost of the feedforward network W0(arec = 0).
The differences in the cost of the resting state did not have a qualitative effect on the
conclusions. A: The same contour plot as in Fig 5B. B: Contour plot with equalized
resting costs (contours as in Fig 5B: 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, and 2.25 bits/s). C:
Heatmap of the relative differences.

S4 Fig Accuracy of information-metabolic efficiency approximation. To
calculate the capacity-cost functions, we calculated the mutual information using Eq.
(5) with the input probability distribution calculated from Eqs. (12) and (14). Here we
compare the information-metabolic efficiencies calculated with the approximation and
the Jimbo-Kunisawa algorithm. A: The same contour plot as in Fig 5B with
information-metabolic efficiencies calculated with the Jimbo-Kunisawa algorithm. B:
Information-metabolic efficiencies calculated with the Fisher-information-based input
distribution. C: Heatmap of the relative differences. Note that the approximation can
only reach values lower than the actual information-metabolic efficiency.

S5 Fig Sampling bias and extrapolation. The information-metabolic efficiency
calculated by the Jimbo-Kunisawa algorithm is plotted for different numbers of
principal components used. We calculated the information-metabolic efficiency from
different numbers of trials. At high number of components, lower number of trials lead
to significantly higher information-metabolic efficiency. This is the effect of the
sampling bias. We attempted to remove the bias by using the quadratic extrapolation
method. For 500 principal components the bias is still relatively low, and increasing the
number of components brings little benefit in terms of information-metabolic efficiency.
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S1 Fig input-output relationship of single neurons. To exclude the network effects, we plotted the tuning curves for
the feedforward network separately for the excitatory (blue) and inhibitory (yellow) neurons. The thick line represents the
median response across the neurons, which shows that their tuning curves are convex in the studied range. The shaded
area shows the spread of the tuning curves across neurons (2.5 to 97.5 percentile). With low values of Pext, the tuning
curves across neurons vary significantly and are skewed to the higher firing rates.
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S2 Fig Fixing the number of external connections to each neuron. Same as Fig 4, but exactly kextPext external
neurons connected to each excitatory and inhibitory neuron. This removed a large part of the dependence on Pext seen in
Fig 4.
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S3 Fig Effect of equalizing the resting cost on the information-metabolic efficiency. We observed that the cost
of the resting state was different for different recurrence strengths arec (Fig 3A-C). This could potentially explain the
higher information-metabolic efficiency E (Eq. 10) for intermediate values of arec and its decrease for high values of arec.
To quantify the effect of the resting cost, we set the resting cost in each case to the resting cost of the feedforward network
W0(arec = 0). The differences in the cost of the resting state did not have a qualitative effect on the conclusions. A: The
same contour plot as in Fig 5B. B: Contour plot with equalized resting costs (contours as in Fig 5B: 0.6, 0.8, 1, 1.2, 1.4,
1.6, 1.8 and 2 bits/s). C: Heatmap of the relative differences.

S4 Fig Accuracy of information-metabolic efficiency approximation. To calculate the capacity-cost functions, we
calculated the mutual information using Eq. (5) with the input probability distribution calculated from Eqs. (12) and (14).
Here we compare the information-metabolic efficiencies calculated with the approximation and the Jimbo-Kunisawa
algorithm. A: The same contour plot as in Fig 5B with information-metabolic efficiencies calculated with the
Jimbo-Kunisawa algorithm. B: Information-metabolic efficiencies calculated with the Fisher-information-based input
distribution. C: Heatmap of the relative differences. Note that the approximation can only reach values lower than the
actual information-metabolic efficiency.
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S5 Fig Sampling bias and extrapolation. The information-metabolic efficiency
calculated by the Jimbo-Kunisawa algorithm is plotted for different numbers of
principal components used. We calculated the information-metabolic efficiency from
different numbers of trials. At high number of components, lower number of trials lead
to significantly higher information-metabolic efficiency. This is the effect of the
sampling bias. We attempted to remove the bias by using the quadratic extrapolation
method. For 500 principal components the bias is still relatively low, and increasing the
number of components brings little benefit in terms of information-metabolic efficiency.
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