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Abstract

In this paper we investigate the rate coding capabilities of neurons whose input signal are
alterations of the base state of balanced inhibitory and excitatory synaptic currents. We con-
sider different regimes of excitation-inhibition relationship and an established conductance-
based leaky integrator model with adaptive threshold and parameter sets recreating biologi-
cally relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-
intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise
ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding
range of the neuron. We quantify the joint effect of SNR and dynamic coding range by com-
puting the metabolic efficiency—the maximal amount of information per one ATP molecule
expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to pre-
dict the shapes of the post-synaptic firing rate histograms that may be tested on experimen-
tal data. Likewise, optimal stimulus input distributions are predicted, however, we show that
the optimum can essentially be reached with a broad range of input distributions. Finally, we
examine which parameters of the used neuronal model are the most important for the meta-
bolically efficient information transfer.

Author summary

Neurons communicate by firing action potentials, which can be considered as all-or-none
events. The classical rate coding hypothesis states that neurons communicate the informa-
tion about stimulus intensity by altering their firing frequency. Cortical neurons typically
receive a signal from many different neurons, which, depending on the synapse type,
either depolarize (excitatory input) or hyperpolarize (inhibitory input) the neural mem-
brane. We use a neural model with excitatory and inhibitory synaptic conductances to
reproduce in-vivo like activity and investigate how the intensity of presynaptic inhibitory
activity affects the neuron’s ability to transmit information through rate code. We reach a
counter-intuitive result that increase in inhibition improves the signal-to-noise ratio of
the neural response, despite introducing additional noise to the input signal. On the other
hand, inhibition also limits the neuronal output range. However, in the end, the actual
amount of information transmitted (in bits per energy expended) is remarkably robust to
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that no competing interests exist. the inhibition level present in the system. Our approach also yields predictions in the

form of post-synaptic firing rate histograms, which can be compared with in-vivo
recordings.

Introduction

Cortical neurons receive input in the form of bombardment by action potentials (spikes) from
other neurons and process and communicate the received information further by transmitting
their own action potentials to other neurons. Individual action potentials do not differ in their
time course and therefore, from the information processing point of view, they can be seen as
all-or-none events. The response to a particular stimulus is therefore represented by a spike
train—a sequence of times when an action potential was produced [1].

According to the efficient-coding hypothesis [2], neurons are adapted to process the infor-
mation from their natural surrounding efficiently. This inspired a number of studies based on
optimality arguments (e.g., [3-9]), with the information efficiency usually being interpreted by
the means of Shannon’s information theory [10].

Given that the cortex has only a limited energy budget and information transfer is costly
[11-13], we expect that neurons balance information rates and energetic expenses. The idea of
energy efficient neural coding was popularized by Levy and Baxter [14]. In their work they
focus on the representational capacity of a noiseless population of neurons and show that opti-
mizing the representational capacity per spike leads to low firing rates, typically observed in
vivo. The introduction of realistic noise [15] and further biophysical details limits the analyti-
cal tractability and studies of noisy neurons are generally limited to numerical analyses of sin-
gle cells and simplified populations.

Typical approaches to information-theoretical analyses of single cells are either the use of
the direct method [16, 17] to evaluate the reproducibility of a response to a given stimulus or
the computation of the mutual information between the stimulus and the response [18] and
eventually evaluating the information capacity of the neuron as an information channel [19-
21]. The attractiveness of information capacity stems from Shannon’s channel coding theorem
which guarantees the existence of a code that is asymptotically able to transmit information at
the rate given by the capacity [22]. See [23-26] for reviews of the use of information theory in
computational neurosciences.

Both the direct method and capacity analysis can be extended to account for the metabolic
expenses. One of the earliest efforts to relate the information capacity to the metabolic
expenses is that of Laughlin et at. [27], where the Gaussian distribution of response variability
is assumed for a cell encoding the stimulus in the graded potential. Balasubramanian [28] dis-
cussed the possibilities of applying the formalism of capacity of constrained channels [29] to
neural systems and Polavieja [30, 31] showed that rate coding neurons [32] with additive
response noise that the predicted shapes of post-synaptic firing rate (PSFR) distributions
obtained from such formalism qualitatively match the experimentally measured distributions
[33]. These inspiring results provided ground for investigating the information-energy balance
for more realistic neuronal models, such as the Hodgkin-Huxley model [34] or a formal model
based on an empirical stimulus-response relationship [35]. Studies concerning the efficiency
of neurons employing different methods of information encoding have also been conducted
(e.g., Leaky integrate and Fire with descending threshold [36], generalized inverse Gaussian
neuron model [37-39]).
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Fig 1. Graphical abstract. (A) Stimulus consisting of excitatory and inhibitory synaptic conductances, generated as shot noise with an exponential
envelope, is delivered to the neuronal model, a passive leaky membrane with a dynamic threshold. The measured response is the number of spikes in a
specified time window (e.g., 250 ms). (B) For each stimulus intensity the full response distribution is obtained. The mean response (solid) and its standard
deviation (shaded) are shown for illustration. (C) We find the probability distribution of inputs that maximizes the mutual information between the
stimulus and the response per single spike. The predicted histogram of post-synaptic firing rates (PSFR) can be compared with experimental data.

https://doi.org/10.1371/journal.pchi.1007545.9001

In the presented work we utilize the MAT (Multi-timescale Adaptive Threshold) model
[40] which has been shown to be very good at predicting in-vivo recorded spike trains [40-
47], while maintaining only a modest number of free parameters. Therefore information-theo-
retical analysis of this model allows us to make predictions for a wide variety of neurons
(Fig 1).

The main contributions and the structure of this work can be summarized as follows:

1. By applying the results of Witsenhausen [48] in the context of neural systems, we conclude
that the maximal mutual information between input and output of a neuron using rate
code must be generally reachable with only a finite number of inputs.

2. We qualitatively discuss the stimulus-response relationships and the capacity-cost functions
and show the stabilizing effect of inhibition on the membrane potential fluctuations and
discuss the implications for the given neuronal model.

3. We analyze the effect of inhibition on information-metabolic efficiency and more intuitive
indicators of information transmission efficiency. We find that for a given mean post-syn-
aptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally
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leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input signifi-
cantly reduces the dynamic coding range of the neuron.

4. We present the predicted PSFR histograms and discuss the comparability with experimen-
tal data. In combination with the relative simplicity of fitting the parameters of the MAT
model to real neurons, the presented framework allows us to predict the PSFR histograms
for a wide variety of neurons. Furthermore, we observe that the shapes of the histograms
depend only marginally the rate coding time scale.

5. We show the predicted optimal input distributions and point out to the robustness of meta-
bolic efficiency and the PSFR histogram towards changes in the input distribution.

6. We explain the effect of model parameters on the obtained results and the significance of
the spontaneous firing rate. We use parameter values fitted by Kobayashi et. al. [40] on
experimental data for further biological relevance and to provide insight into what influ-
ences the information-metabolic efficiency on a large scale.

Materials and methods
Neuronal model

The membrane potential of the MAT model is governed by the equation:

dv
TmE: _(V_EL)+RIsyn7 (1)
where 7, is the membrane time constant, V is the membrane potential, E; = —80 mV the leak-
age potential, Iy, is the synaptic current. Spikes are fired when the membrane potential
reaches (or is above) the value of a dynamic threshold 6(t). The dynamics of 6 is described by

0(t) = > D(t — t) + o, (2)

D(t) = ZH(t)otj exp (—t/1,) (3)

where k iterates through all the previous spikes, t is the k-th spike’s time and H is the Heavi-
side function. Therefore the threshold is composed of L exponentially decaying components
and an asymptotic threshold value w. The j-th component increases by a; every time a spike
occurs and then decays with the time constant 7;. Absolute refractory period of 2 ms is intro-
duced, during which the dynamics of the membrane potential and the threshold remain
unchanged, but a spike cannot be fired. The parameters used to replicate the behavior of neu-
rons from different classes (regular spiking—RS, intrisic bursting—IB, fast spiking—FS, chat-
tering—CH) were identified by Kobayashi et al. [40]. All relevant model parameters are
specified in S1 Appendix.

The synaptic current is given by

Lin(t) = 8 ()(V = El) + & (D(V = Eiy) (4)

where gexc, ginn are the total conductances of the excitatory and inhibitory synapses and E.. =
0 mv, E;,, = =75 mv are the respective synaptic reversal potentials. We consider the excitatory
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and inhibitory conductances to be

Guct) = D g H(t — 1) exp ((t, — 1) /7., (5)

f<t

G (t ngh t) exp ((t — 1)/ Tun), (6)

<t

where the times {t}, {t;} are generated by independent Poisson point processes with intensities
Aexo> Ainn (to mimic the arrival of excitatory and inhibitory synapses), g.,. and g, ., correspond
to peak conducatances of individual synapses and 7.y, Tinn are time constants of those synap-
ses, which were chosen as 3 ms for the excitatory and 10 ms for the inhibitory synapses [49].
We denote the excitatory part Aey. as the stimulus intensity [34].

To recreate biologically plausible conditions, we calculate the peak conductances and mini-
8 258 (where “beg” stands for the background net-
work activity), so that the mean and standard deviation of g.,. and g;,, correspond to values
reported in [49], which were obtained from a detailed biophysical simulation. The values of
the peak conductances are g, = 1.50 nS and g, , = 1.53 nS and the rates of arrival of action
potentials corresponding to the background activity are A>® = 2.67 kHz, L*® = 3.73 kHz
(S3 Appendix).

The response of the neuron y is the number of observed spikes in a time window A, the cor-
responding firing rate is then y/A. Since the differential equation describing the membrane
potential (Eq (1)) is stochastic due to the randomness introduced by the input current, the
response is described by a random variable Y for each input Aey.. In our work we compare the
results for five different lengths of coding time windows: 100 ms, 200 ms, 300 ms, 400 ms and
500 ms.

The numerical integration procedure is described in S2 Appendix.

mal intensities of Poisson processes A,

Metabolic cost of neuronal activity

The metabolic cost of neuronal activity is determined mainly by the activity of the Na*/K*
ionic pump in the neuronal membrane, pumping the excess Na™ out of the neuron. The main
contributors to the overall cost are then: 1. reversal of Na* entry at resting potential, 2. reversal
of ion fluxes through post-synaptic receptors, 3. reversal of Na™ entry for action potentials and
4. additional costs associated with the action potential [12, 50, 51].

We follow the estimates from [11], i.e., we set the cost of maintaining the resting potential
at Wyege = 0.342 - 10° ATP molecules per second, the cost of reversal of Na* entry for action
potentials at 0.384 - 10° ATP molecules per single action potential and the costs associated
with vesicle release due to action potential at 0.328 - 10° ATP molecules, adding up to wpie ~
0.71 - 10° ATPs/spike.

To calculate the cost needed to reverse the ion fluxes through post-synaptic receptors, we
follow the approach used in [13]. We calculated the conductance of Na* channels:

& = lg_—E_ (7)

Ex

where Ey, = 90 mV, Ex = —105 mV are the reversal potentials of Na* and K™ channels. The
current due to influx of Na* ions is then

I, (1) = & (D(V(0) — Ex,)- (8)

Integrating the current over A and dividing by the charge of an electron e gives us the total
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number of Na* that have to be extruded. The ion pump uses one ATP molecule for 3 Na™
extruded.

Substituting gn.(#) and V(#) by their mean values (g, (t), V (¢)) for excitation and inhibition
intensities Aeye, Ainn, We obtain the approximate formula for the cost of reversal of the synaptic
currents:

1_ _
Wsyn(xexu )\’inh) = %gNa(xexc’ kinh)(V(y\’exU )\’inh) - ENa)A' (9)

The total cost of the signaling, given the input (Aexe, Ainn), is then:

W()\‘exw xinh) = (Wrest + ‘Wsyn)A + Wspike”()\‘exc’ xinh)’ (10)

where 71(Aexe> Ainn) is the average number of spikes observed for the given input.

Information capacity and capacity-cost function

In the framework of information theory, the input is a random variable X with probability
density function p(x). In our case, x is the stimulus intensity, A.x, which is a real number from
an interval [a, b]. We can than define the corresponding marginal output probability distribu-
tion g,

4,0) = / P (y]x) dx. (1)

The conditional probability distribution f(y|x) describing the probability of observing an out-
put y given an input (stimulus) x has to be obtained first [22]. Due to the non-linear character
of Egs (1-6) the closed-form solution for f(y|x) is not available, therefore we used extensive
Monte Carlo simulation to obtain the numerical approximation. The amount of information
about the stimulus X = x from observing the response Y = y is defined as [22, p. 16]

i(x;y) =1o M
(x;y) = log, 20) (12)

By averaging the value of information over all possible outputs, we get the specific informa-
tion (since Y is discrete) [52-54]

400

i Y) = i(x7)q,0»). (13)

y=0

By averaging the specific information over all possible inputs, we get the mutual information
b
I(X;Y) = / i(x; Y)p(x) dx. (14)

The information capacity expresses the maximal amount of information that can be reliably
transmitted per single channel use and is defined as

C=supl(X;Y),
p(x) (15)

where the supremum is taken over all possible input probability distributions. Since the dura-
tion of one channel use is A, £ is the capacity in bits per second.
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Given the input probability distribution p(x) the average metabolic cost W, is then
b
W, = [ plowi) (16)

where w(x) is given by Eq (10) We maximize mutual information over all possible input proba-
bility distributions p that satisfy the condition W, < W for some selected W, and thus obtain
the capacity-cost function [29]:

C(W)= sup I(X;Y). (17)

p):W,<W
It follows from the Lagrangian theorem [55, 56], that C(W) is attained either at the cost cor-
responding to the unrestrained capacity Wy, for W > W, or at W. The quantity % for W
< Whax then expresses the amount of information per unit cost, which motivates the defini-

tion of information-metabolic efficiency E [28, 35, 57], i.e. the maximal amount of information
per unit cost

g= A (18)
W* = arg max C(‘va) . (19)

Wel0,400)

where W* is the optimal average cost.

We will refer to a regime in which the neuron encodes the maximal possible amount of
information per energy as to an information-metabolically efficient regime. In such regime, the
inputs x are assigned probabilities p*(x) and the probability of observing an output Y = y is

P(Y =) = / PR ). (20)

Since the response y is the number of spikes in a time window A, we can use Eq (20) to cal-
culte the mean PSFR:

PSFR = % y (21)
(PSFR) — %i JP(Y = ). (22)

Properties of information-theoretic optima and numerical optimization

Theoretical results show that the support of the optimal input distribution p*(x) for certain
channels (neuron with gamma distributed inter-spike interval [21], energy constrained Gauss-
ian channel [56], Rayleigh-fading channel [58]) contains only a finite number of points. More-
over, as a consequence of Dubin’s theorem [48], it is guaranteed that for any channel with a
finite number of possible output states the optimal input distribution has to be discrete. The
number of support points is at most equal to the number of possible outputs. Since the number
of action potentials in a finite time window is limited, it generally follows that the optimal
input distribution in the rate-coding scheme must contain only finitely many stimulus values
of non-zero probability.
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The theory presented above holds for memoryless information channels without feedback,
i.e., the response to the stimulus depends only on the current stimulus and not on any past sti-
muli or responses of the channel. However, real neurons exhibit adaptation to the stimulus,
therefore the stimulus-response relationship f(y|x) is also affected by the probability distribu-
tion of stimuli p(x). In order to mitigate the effect of history, we developed a fixed-point based
method to ensure that the distribution of stimuli p(x) used to obtain f{y|x) is the same as the
predicted optimal distribution (S5 Appendix).

Results
The capacity-cost functions

We evaluated the information transmission capabilities for different stimulation scenarios dis-
tinguished by the amount of inhibition associated with the stimulus. In each scenario, the fre-

<) to approximately 40 - 1*®, therefore the

exc

quency of excitatory synapses ranged from A,

exc

intensity of the stimulus can be represented by A € [1, 40]:

)\‘exc =A- )\'(bcg) (23)

exc

The frequency of inhibitory synapses added on top of 1"® generally scales linearly with the

intensity added on top of Xizzg), i.e. with A — 1. The frequency of inhibitory synapses can be

than expressed with an inhibition scaling factor B as
Mo = M (1 + B(A — 1)). (24)

From the stimulus-response relationships (Fig 2) it is obvious that the fast spiking (FS) and
chattering (CH) neurons have an advantage of a wide range of possible outputs. Also the exci-
tation-only stimulation scenario (B = 0) allows for higher firing rates (i.e., offers wider coding
range). However, when the metabolic expenses are taken into account the range of possible
outputs becomes less important (because of the high associated expenses). This can be seen in
Fig 3 where the capacity cost function for four different parameter sets of the MAT model
(Table A in S1 Appendix) is shown and it is illustrated how the capacity cost function trans-
lates to bits per spike. The RS neuron is generally the most efficient independently either of the
inhibition scaling factor B or the coding time window. Moreover, since at any allowed cost
either the RS of the FS neuron offer the highest amount of transmitted information, we
conclude that the bursting behavior is not beneficial for rate coding. This was also observed
experimentally for temporal code [59].

Inhibition stabilizes the membrane potential

We observed that higher inhibition to excitation ratios leads to lower membrane potential fluc-
tuations. This arises as an effect of synaptic filtering and reversal potentials, which are both
biologically important parts of neural communication and essential for observation of this
phenomenon (see S4 Appendix for details). In [60], similar effect was reported for a membrane
potential model without synaptic filtering, however, only for a strongly hyperpolarized mem-
brane. The suppression of membrane potential fluctuations has also been observed in vivo
[61].

The decrease in the membrane potential’s standard deviation leads to a more reliable firing
rate (response) and subsequently higher signat-to-noise ratio (SNR) in regimes with stronger
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Fig 2. Stimulus-response relationships. Stimulus-response relationships for the MAT neurons specified by the parameters in Table A in SI Appendix.
Each row corresponds to a different inhibition regime. The ratio of inhibitory to excitatory conductance as a function of stimulus intensity is displayed
in the leftmost column. The time window A was in this case chosen as 500 ms. The x-axis is logarithm of the rate of bombardment by excitatory
synapses (Eq 23). The y-axis shows the post-synaptic firing rate (Eq 21). The rate of inhibitory synapses is specified by B (Eq 24). This Figure is also
available with equally scaled y-axes for all neurons and regimes (S1 Fig).

https://doi.org/10.1371/journal.pchi.1007545.9002

inhibition (Fig 4). For given time window A and inhibition scaling factor B, SNR is defined as

SNR(x; A, B) = (%) : (25)

where r(x; A, B) is the mean response to the stimulus x, given the time window A and the inhi-
bition scaling factor B, s(x; A, B) is the standard deviation of the response:

() = 5 DO, (26)

09 = 3| SO - o) @)

The effect of inhibition on metabolic efficiency

The higher ratio of inhibition to excitation also has some negative consequences:

1. The inhibition limits the possible depolarization of the membrane and the neuron is unable
to attain high firing rates. We quantify this by defining the coding range:

CR(A, B) = max(r(x,; A, B) — r(x;; A, B)). (28)

X1,X9

We observe that the coding range is generally decreased with increased amount of inhibi-
tion (Figs 2 and 4A).
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A. Capacity-cost function

20.0 -
RS

IB
FS
CH

17.5 -

15.0 A

12.5

10.0 A

C(W) (bits/s)

~
w
1

5.0 A

2.5 A

0.0 A

B. Information-metabolic efficiency

0.5 A
0.4 -

0.3 -

0.2 -

C(W)/W (bits/10° ATP)

18.3-10°
(ATP/s)

0.1 -

25 30 35 40
W (10° ATP / s)

Fig 3. Capacity-cost function. Capacity-cost function (panel A) and capacity per spike (panel B) for the case of coding
time window A = 100 ms and inhibition scaling factor B = 0.4. The dashed vertical line indicates the cost at which the
optimal capacity per spike for the RS neuron is reached.

https://doi.org/10.1371/journal.pcbi.1007545.9003

10 15

N W

o

2. To attain identical mean firing rate with higher excitation to inhibition ratio, the excitatory
synaptic current has to be larger and therefore such stimulation is associated with higher
metabolic costs (Fig 5).

Surprisingly, the information theoretical efficiency is generally unaffected by the level of
inhibition, meaning that the increase in signal to noise ratio and decrease of coding range
effectively even out. This holds up to a certain point, when the coding range becomes too nar-
row and the efficiency of information transfer starts dropping dramatically (Fig 4D).
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Fig 4. The effect of inhibition on metabolically efficient information transfer. (A) Signal-to-noise ratio (SNR, Eq (25)) of the RS neuron’s
response as a function of the mean post-synaptic firing rate r(x) (Eq 26). Higher inhibition leads to a higher SNR, however, also to a lower
coding range. The coding range for B = 0.2 is visualized in the plot. (B) The SNR at 10 Hz at different inhibition levels for all four neurons. The
effect of the decreased membrane potential fluctuations on the FS and CH neurons is negligible, as opposed to the RS and IB neurons. (C)
Decrease of the coding range with inhibition. (D) The metabolic efficiency in bits per spike (Eq (18)). The initial increase in the efficiency is
almost negligible, however, the drop for B = 1 caused by the narrow coding range is apparent. The time window used for this figure is A = 500
ms.

https://doi.org/10.1371/journal.pcbi.1007545.9004
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Fig 5. Metabolic cost of neural activity. (A) Cost of response for a given input x = A, RS neuron (Tab A in S1
Appendix), A = 100 ms, B = 0.4. (B) Cost of maintaining a firing rate of 12 Hz for 100 ms for different values of
inhibition to excitation ratio.

https://doi.org/10.1371/journal.pcbi.1007545.9005
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Fig 6. Predicted PSFR histograms. Post-synaptic firing rate histograms corresponding to the metabolically efficient regime with the coding time
window A = 500 ms and inhibition scaling factor B = 0.4 for the four different neurons. Unlike the statistics of the input, the output statistics can be
measured in vivo and can therefore be used to verify whether a neuron employs metabolically efficient coding. A typical spike train in the efficient
regime is shown for each neuron.

https://doi.org/10.1371/journal.pcbi.1007545.9006

The optimal PSER histograms

By evaluating the information-metabolic 